Some more properties of the bisect-diagonal quadrilateral
 MICHAEL DE VILLIERS

Martin Josefsson [1] has coined the term "bisect-diagonal quadrilateral" for a quadrilateral with at least one diagonal bisected by the other diagonal, and extensively explored some of its properties. This quadrilateral has also been called a "bisecting quadrilateral" [2], a "sloping-kite" or "sliding-kite" [3], or "slant kites" [4]. The purpose of this paper is to explore some more properties of this quadrilateral.

A familiar property of the bisect-diagonal quadrilateral that is proved in Coxeter [5, pp. 54-55) as well as in Josefsson [1, pp. 215], and is extended to the concave case by Pillay \& Pillay [6, pp. 16-17] is the following:
Theorem 1: A quadrilateral is a bisect-diagonal quadrilateral (where at least one diagonal bisects the other) if, and only if, the diagonal that bisects the other also bisects the area of the quadrilateral.

Equi-partitioning point of a quadrilateral

As is well known, the centroid G of a triangle $A B C$ divides, or equi-partitions, the triangle into three triangles, $A G B, B G C$, and $C G A$, of equal area.

The question now arises whether one can find a similar point P for a quadrilateral $A B C D$ that divides, or equi-partitions, it into four triangles, $A P B, B P C, C P D$ and $D P A$, of equal area. For a parallelogram, it's obvious that such an 'equi-partitioning' point P exists, and would be located at its centroid, i.e. the intersection of its diagonals. But what about a more general quadrilateral? Where can P be located?

Based on the example of the triangle and the parallelogram, one may intuitively feel that in general such a point would be located at either the point mass centroid or the lamina centroid of a quadrilateral. However, a quick experimental check using an accurately constructed sketch with dynamic geometry as shown in Figure 1, shows that neither the point mass centroid ${ }^{1} G_{P M}$ nor the lamina centroid ${ }^{2} G_{L}$ respectively divide the quadrilaterals $A B C D$ and $K L M N$ into four triangles of equal area. Since G_{L} is the balancing point of the lamina (cardboard) quadrilateral $A B C D$, one would have anticipated that the four triangles subtended by G_{L} and the four sides would be equal in

[^0]area. This not being the case in general as shown in Figure 1, therefore seems a bit counter-intuitive and unexpected.

Figure 1
The reader may now wish to use the following online dynamic sketch to experimentally explore where such a point P might be located for a general quadrilateral or some special cases: http://dynamicmathematicslearning.com/equipartitioning-quad.html

Quite remarkably, such a (equi-partitioning) point P that divides, or equipartitions, a quadrilateral into four triangles of equal area only exists for a bisect-diagonal quadrilateral. This follows from the following little known theorem proved by Pillay \& Pillay [6] \& Gilbert et al [7, pp. 68-70]:

Theorem 2: A quadrilateral has an equi-partitioning point P if, and only if, it is a bisectdiagonal quadrilateral, and then P is the midpoint of the diagonal bisecting the other.

The proof that the midpoint of the diagonal bisecting the other is the equi-partitioning point P of a bisect-diagonal quadrilateral follows directly from Theorem 1, and is left to the reader. The following proof that only a bisect-diagonal quadrilateral has an equipartitioning point is slightly modified from that of [6] \& [7], and is given below only for the convex case.

Figure 2
Proof: Suppose a convex quadrilateral $A B C D$ has an equi-partitioning point P as shown in Figure 2. Since it is given that triangles $A P B, B P C, C P D$ and $D P A$ are equal in area, it follows that diagonals $B P$ and $D P$ bisect the areas of quadrilaterals $A B C P$ and $A P C D$ respectively. Hence from Theorem 1, both straight lines $B P$ and $D P$ extended contain the midpoint M of $A C$.

This implies that $D P M$ is a straight line, and since the straight line through M and P must contain both B and D; we conclude that $B M P D$ must coincide with the diagonal $B D$, and that $B D$ bisects $A C$ in M. But triangles $A P B$ and $D P A$ have the same area, so $B P$ $=P D$. Thus we have shown that diagonal $B D$ bisects diagonal $A C$ and that the equipartitioning point P is the midpoint of $D B$.

Of course, the argument is entirely exchangeable, and we could in the same way argue that diagonal $A C$ bisects diagonal $B D$ and that the equi-partitioning point P is the midpoint of $A C$. Either way, the result is proved that at least one of the diagonals of $A B C D$ is bisected by the other.

The same argument, with a few modifications, applies when quadrilateral $A B C D$ is concave, but is left to the reader. As shown in [7, pp. 69-70], one can also prove this theorem using a trigonometric argument that extends to the concave case.

Lamina and point mass centroids of a bisect-diagonal quadrilateral

Let us now examine the lamina and point mass centroids of a bisect-diagonal quadrilateral, and any relationship between them.

Given a bisect-diagonal quadrilateral $A B C D$ as shown in Figure 4 with M the midpoint of the bisected diagonal $B D$ and P the midpoint of diagonal $A C$. (According to Theorem 2, the point P is therefore the equi-partitioning point of $A B C D)$.

Figure 3
Theorem 3: Construct the centroids of triangles $D P A, A P B, B P C$ and $C P D$ of a bisectdiagonal quadrilateral $A B C D$ and label them respectively, E, F, G and H. Then $E F G H$ is a parallelogram and the intersection of its diagonals, G_{l}, lies on $A C$, and is the lamina centroid of $A B C D$.

Proof: Since E lies on the median $D X$ of triangle $D P A$ and H lies on the median $D Y$ of triangle $C P D$, it follows that $E H / / X Y$ and $E H=\frac{2}{3} X Y$. Similarly, $F G / / X Y$ and $F G=\frac{2}{3} X Y$. Hence, opposite sides $E H$ and $F G$ are parallel and equal, and shows that $E F G H$ is a parallelogram. Since the areas of triangles $D P A, A P B, B P C$ and $C P D$ are equal, the weight of their respective laminas would be equally concentrated at their centroids; hence all together, their lamina weights would balance at the intersection, G_{1}, of the diagonals of $E F G H$. More over, since $E H$ and $F G$ are the same distance away from $A C$, it follows that $A C$ passes through the symmetrical point, G_{1}, of $E F G H$. This completes the proof of Theorem 3.

In addition, since $X P=P Y$, note that B^{\prime}, the centroid of triangle $A C D$, is the midpoint of $E H$. Similarly, D^{\prime} is the midpoint of $F G$. Since the centroids A^{\prime} and C^{\prime},
respectively, of triangles $B C D$ and $A B D$, lie on diagonal $A C$, the line $B^{\prime} D^{\prime}$ also intersects the line $A^{\prime} C^{\prime}($ line $A C)$ at the lamina centroid, G_{1}.

Figure 4
Theorem 4: The lamina parallelogram $E F G H$ of a bisect-diagonal quadrilateral $A B C D$ is homothetic to the Varignon parallelogram IJKL formed by the midpoints of the sides of $A B C D$, with the centre of similarity between the two located at P, and a scale factor of $\frac{2}{3}$. Proof: Since E and F are the respective centroids of triangles $D P A$ and $A P B$, we have in triangle IPJ that $E F / / I J$ and $E F=\frac{2}{3} I J$. Since the same can be shown for the other pairs of corresponding sides of $E F G H$ and $I J K L$, it follows that $E F G H$ is homothetic to $I J K L$ with centre P and scale factor $\frac{2}{3}$.

Theorem 5: The distance between the lamina centroid G_{1} and the equi-partitioning point P of a bisect-diagonal quadrilateral is twice that of the distance between its lamina centroid G_{1} and point mass centroid G_{2}.

Proof: Since the point mass centroid G_{2} is located at the intersection of the diagonals of the Varignon parallelogram $I J K L$, it follows from the similarity transformation in Theorem 4 that $G_{1} P=2 G_{2} G_{1}$.

In addition, according to a well-known result in [5, p. 54] and [1, p. 216] the point mass centroid G_{2} also lies at the midpoint of the line segment $M P$. Hence, $3 G_{2} G_{1}=G_{2} P$ $\Rightarrow 6 G_{2} G_{1}=M P$.

The Newton-Gauss line

Since the celebrated Newton-Gauss line [8, p. 62] is the straight line containing the midpoints of the three diagonals of a complete quadrilateral, it immediately follows that the diagonal $A C$ passes through the midpoint S of the third diagonal $Q R$ of the complete bisect-diagonal quadrilateral $A B C D Q R$.

Figure 5

Theorem 6: Given a complete bisect-diagonal quadrilateral $A B C D Q R$ as shown in Figure 5 with diagonal $A C$ bisecting diagonal $B D$, then the third diagonal $Q R$ is parallel to $B D$.

Proof: Drop perpendiculars from Q, R, D and B to $A C$. From the similarity of triangles $Q X C$ and $D V C$ it follows that $\frac{C D}{C Q}=\frac{D V}{Q X}$. Similarly, $\frac{C B}{C R}=\frac{B W}{R Y}$. From the congruency of triangles $Q X S$ and $R Y S$, and of triangles $D V M$ and $B W M$, we have $\frac{D V}{Q X}=\frac{B W}{R Y}$. Hence, $\frac{C D}{C Q}=\frac{C B}{C R}$, which implies that $Q R$ is parallel to $B D$.

Conversely, given a complete quadrilateral $A B C D Q R$ with diagonal $Q R$ parallel to $B D$, then it's easy to see that the above argument applies in reverse, and that diagonal $A C$ will bisect diagonal $B D$. In other words, $A B C D$ will be a bisect-diagonal quadrilateral.

Concluding comment

Apart from parallelograms and kites as special cases of a bisect-diagonal quadrilateral, it might also be of interest to some readers to note that that any cyclic quadrilateral $A B C D$ with its sides $A B: B C: C D: D A$ in geometric progression with common ratio r, as shown in [9], is also a bisect-diagonal quadrilateral. It's easy to establish and left as an exercise.

Note: A dynamic geometry sketch illustrating the properties of a bisect-diagonal quadrilateral explored here is available online at:
http://dynamicmathematicslearning.com/bisect-diagonal-quadrilateral.html

References

1. M. Josefsson, Properties of bisect-diagonal quadrilaterals, Math. Gaz. 101(551) (July 2017) pp. 214-226. DOI: https://doi.org/10.1017/mag.2017.61
2. M. de Villiers, Some Adventures in Euclidean geometry, Dynamic Mathematics Learning (2009).
3. G. Graumann, Investigating and ordering Quadrilaterals and their analogies in space - problem fields with various aspects, ZDM 37 (3) (2005) pp. 190-198, also available at: http://subs.emis.de/journals/ZDM/zdm053a8.pdf
4. A. Ramachandran, The four-gon family tree, At Right Angles 1 (1) (2012) pp. 5357, also available at:
http://www.teachersofindia.org/sites/default/files/12_four_gon_family_tree.pdf
5. H. S. M. Coxeter \& S. L. Greitzer, Geometry Revisited, Math. Ass. Amer. (1967).
6. S. Pillay \& P. Pillay, Equipartitioning and Balancing Points of Polygons, Pythagoras, 71 (July 2010), pp. 13-21.
7. Gilbert, G. T., Krusemeyer, M., \& Larson, L. C. The Wohascum County problem book. Dolciani Mathematical Expositions, 14(10), Washington, DC: Math. Ass. Amer. (1993).
8. Johnson, R.A. Advanced Euclidean Geometry. Dover Publications, N.Y. (1960).
9. De Villiers, M. A cyclic Kepler quadrilateral \& the Golden Ratio, At Right Angles, March 2018, pp. 91-94. (Accessed on 16 August 2020 at: https://azimpremjiuniversity.edu.in/SitePages/resources-ara-march-2018-cyclic-kepler-quadrilateral.aspx).

Mathematics Education (RUMEUS), University of Stellenbosch, South Africa
e-mail: profmd@mweb.co.za Homepage: http://dynamicmathematicslearning.com/homepage4.html

Dynamic Geometry Sketches: http://dynamicmathematicslearning.com/JavaGSPLinks.htm

[^0]: ${ }^{1}$ The point mass centroid of a quadrilateral is located at the intersection of the lines connecting the midpoints of opposite sides.
 ${ }^{2}$ The lamina centroid of a quadrilateral is located at the intersection of the line connecting the centroids of triangles $K L M$ and $M N K$ with the line connecting the centroids of triangles $K L N$ and $L M N$.

