
 

Some more properties of the bisect-diagonal quadrilateral  
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Martin Josefsson [1] has coined the term “bisect-diagonal quadrilateral” for a 
quadrilateral with at least one diagonal bisected by the other diagonal, and extensively 
explored some of its properties. This quadrilateral has also been called a “bisecting 
quadrilateral” [2], a “sloping-kite” or “sliding-kite” [3], or “slant kites” [4]. The purpose 
of this paper is to explore some more properties of this quadrilateral. 
 
A familiar property of the bisect-diagonal quadrilateral that is proved in Coxeter [5, pp. 
54-55) as well as in Josefsson [1, pp. 215], and is extended to the concave case by Pillay 
& Pillay [6, pp. 16-17] is the following: 
Theorem 1: A quadrilateral is a bisect-diagonal quadrilateral (where at least one diagonal 
bisects the other) if, and only if, the diagonal that bisects the other also bisects the area of 
the quadrilateral. 
 
Equi-partitioning point of a quadrilateral 
As is well known, the centroid G of a triangle ABC divides, or equi-partitions, the triangle 
into three triangles, AGB, BGC, and CGA, of equal area. 

The question now arises whether one can find a similar point P for a quadrilateral 
ABCD that divides, or equi-partitions, it into four triangles, APB, BPC, CPD and DPA, of 
equal area. For a parallelogram, it’s obvious that such an ‘equi-partitioning’ point P 
exists, and would be located at its centroid, i.e. the intersection of its diagonals. But what 
about a more general quadrilateral? Where can P be located? 
 Based on the example of the triangle and the parallelogram, one may intuitively 
feel that in general such a point would be located at either the point mass centroid or the 
lamina centroid of a quadrilateral. However, a quick experimental check using an 
accurately constructed sketch with dynamic geometry as shown in Figure 1, shows that 
neither the point mass centroid1 GPM nor the lamina centroid2 GL respectively divide the 
quadrilaterals ABCD and KLMN into four triangles of equal area. Since GL is the 
balancing point of the lamina (cardboard) quadrilateral ABCD, one would have 
anticipated that the four triangles subtended by GL and the four sides would be equal in 
                                                
1 The point mass centroid of a quadrilateral is located at the intersection of the lines connecting the 
midpoints of opposite sides. 
2 The lamina centroid of a quadrilateral is located at the intersection of the line connecting the centroids of 
triangles KLM and MNK with the line connecting the centroids of triangles KLN and LMN. 
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area. This not being the case in general as shown in Figure 1, therefore seems a bit 
counter-intuitive and unexpected. 

 
Figure 1 

The reader may now wish to use the following online dynamic sketch to experimentally 
explore where such a point P might be located for a general quadrilateral or some special 
cases: http://dynamicmathematicslearning.com/equipartitioning-quad.html 

Quite remarkably, such a (equi-partitioning) point P that divides, or equi-
partitions, a quadrilateral into four triangles of equal area only exists for a bisect-diagonal 
quadrilateral. This follows from the following little known theorem proved by Pillay & 
Pillay [6] & Gilbert et al [7, pp. 68-70]: 

Theorem 2: A quadrilateral has an equi-partitioning point P if, and only if, it is a bisect-
diagonal quadrilateral, and then P is the midpoint of the diagonal bisecting the other. 

The proof that the midpoint of the diagonal bisecting the other is the equi-partitioning 
point P of a bisect-diagonal quadrilateral follows directly from Theorem 1, and is left to 
the reader. The following proof that only a bisect-diagonal quadrilateral has an equi-
partitioning point is slightly modified from that of [6] & [7], and is given below only for 
the convex case. 



 

 
Figure 2 

Proof: Suppose a convex quadrilateral ABCD has an equi-partitioning point P as shown 
in Figure 2. Since it is given that triangles APB, BPC, CPD and DPA are equal in area, it 
follows that diagonals BP and DP bisect the areas of quadrilaterals ABCP and APCD 
respectively. Hence from Theorem 1, both straight lines BP and DP extended contain the 
midpoint M of AC. 

This implies that DPM is a straight line, and since the straight line through M and 
P must contain both B and D; we conclude that BMPD must coincide with the diagonal 
BD, and that BD bisects AC in M. But triangles APB and DPA have the same area, so BP 
= PD. Thus we have shown that diagonal BD bisects diagonal AC and that the equi-
partitioning point P is the midpoint of DB. 
 Of course, the argument is entirely exchangeable, and we could in the same way 
argue that diagonal AC bisects diagonal BD and that the equi-partitioning point P is the 
midpoint of AC. Either way, the result is proved that at least one of the diagonals of 
ABCD is bisected by the other. 
 The same argument, with a few modifications, applies when quadrilateral ABCD 
is concave, but is left to the reader. As shown in [7, pp. 69-70], one can also prove this 
theorem using a trigonometric argument that extends to the concave case. 

Lamina and point mass centroids of a bisect-diagonal quadrilateral 
Let us now examine the lamina and point mass centroids of a bisect-diagonal 
quadrilateral, and any relationship between them.  



 

 Given a bisect-diagonal quadrilateral ABCD as shown in Figure 4 with M the 
midpoint of the bisected diagonal BD and P the midpoint of diagonal AC. (According to 
Theorem 2, the point P is therefore the equi-partitioning point of ABCD). 

 
Figure 3 

Theorem 3: Construct the centroids of triangles DPA, APB, BPC and CPD of a bisect-
diagonal quadrilateral ABCD and label them respectively, E, F, G and H. Then EFGH is 
a parallelogram and the intersection of its diagonals, G1, lies on AC, and is the lamina 
centroid of ABCD.  

Proof: Since E lies on the median DX of triangle DPA and H lies on the median DY of 

triangle CPD, it follows that EH // XY and 𝐸𝐻 = !
!
𝑋𝑌. Similarly, FG // XY and 

𝐹𝐺 = !
!
𝑋𝑌. Hence, opposite sides EH and FG are parallel and equal, and shows that 

EFGH is a parallelogram. Since the areas of triangles DPA, APB, BPC and CPD are 
equal, the weight of their respective laminas would be equally concentrated at their 
centroids; hence all together, their lamina weights would balance at the intersection, G1, 
of the diagonals of EFGH. More over, since EH and FG are the same distance away from 
AC, it follows that AC passes through the symmetrical point, G1, of EFGH. This 
completes the proof of Theorem 3. 

  In addition, since XP = PY, note that 𝐵!, the centroid of triangle ACD, is the 

midpoint of EH. Similarly, 𝐷! is the midpoint of FG. Since the centroids 𝐴! and 𝐶!, 



 

respectively, of triangles BCD and ABD, lie on diagonal AC, the line 𝐵!𝐷! also intersects 

the line 𝐴!𝐶! (line AC) at the lamina centroid, G1. 

 
Figure 4 

Theorem 4: The lamina parallelogram EFGH of a bisect-diagonal quadrilateral ABCD is 
homothetic to the Varignon parallelogram IJKL formed by the midpoints of the sides of 

ABCD, with the centre of similarity between the two located at P, and a scale factor of !
!
. 

Proof: Since E and F are the respective centroids of triangles DPA and APB, we have in 

triangle IPJ that EF // IJ and EF = !
!
 IJ. Since the same can be shown for the other pairs 

of corresponding sides of EFGH and IJKL, it follows that EFGH is homothetic to IJKL 

with centre P and scale factor !
!
. 

Theorem 5: The distance between the lamina centroid G1 and the equi-partitioning point P 
of a bisect-diagonal quadrilateral is twice that of the distance between its lamina centroid 
G1 and point mass centroid G2. 

Proof: Since the point mass centroid G2 is located at the intersection of the diagonals of 
the Varignon parallelogram IJKL, it follows from the similarity transformation in 
Theorem 4 that G1P = 2G2G1.  



 

In addition, according to a well-known result in [5, p. 54] and [1, p. 216] the point 
mass centroid G2 also lies at the midpoint of the line segment MP. Hence, 3G2G1 = G2P 

⇒ 6G2G1 = MP. 

The Newton-Gauss line 
Since the celebrated Newton–Gauss line [8, p. 62] is the straight line containing the 
midpoints of the three diagonals of a complete quadrilateral, it immediately follows that 
the diagonal AC passes through the midpoint S of the third diagonal QR of the complete 
bisect-diagonal quadrilateral ABCDQR. 

 
Figure 5 

 
Theorem 6: Given a complete bisect-diagonal quadrilateral ABCDQR as shown in Figure 
5 with diagonal AC bisecting diagonal BD, then the third diagonal QR is parallel to BD. 

Proof: Drop perpendiculars from Q, R, D and B to AC. From the similarity of triangles 

QXC and DVC it follows that !"
!"
= !"

!"
. Similarly, !"

!"
= !"

!"
. From the congruency of 

triangles QXS and RYS, and of triangles DVM and BWM, we have !"
!"
= !"

!"
. Hence, 

!"
!"
= !"

!"
, which implies that QR is parallel to BD. 

Conversely, given a complete quadrilateral ABCDQR with diagonal QR parallel to BD, 
then it’s easy to see that the above argument applies in reverse, and that diagonal AC will 
bisect diagonal BD. In other words, ABCD will be a bisect-diagonal quadrilateral.  



 

Concluding comment 
Apart from parallelograms and kites as special cases of a bisect-diagonal quadrilateral, it 
might also be of interest to some readers to note that that any cyclic quadrilateral ABCD 
with its sides AB : BC : CD : DA in geometric progression with common ratio r, as shown 
in [9], is also a bisect-diagonal quadrilateral. It’s easy to establish and left as an exercise. 
 
Note: A dynamic geometry sketch illustrating the properties of a bisect-diagonal 
quadrilateral explored here is available online at:  
http://dynamicmathematicslearning.com/bisect-diagonal-quadrilateral.html  
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