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Abstract. The famous theorem of Napoleon was recently extended to higher dimensions. With the
help of weighted vertices of amsimplexT in E*, n > 2, we present a weighted version of this
generalized theorem, leading to a natural configuratiof ef 1)-spheres corresponding withby

an almost arbitrarily chosen point. Besides the Euclidean point of view, also affine aspects of the
theorem become clear, and in addition a critical discussion on the role of the Fermat—Torricelli point
within this framework is given.

0. Introduction

It is known that Napoleon Bonaparte was interested in mathematics and natural
sciences, but it is not completely verified whether the basic theorem discussed
here is due to him. Its first attribution seems to have been given in the book [Fa],
where it is accompanied by the paranthetical comment ‘Teorema proposto per la
dimonstrazione da Napoleone a Lagrange’ (p. 186). However, the theorem itself
occurred already in the Italian school book [Tu] from 1843, see also [La].

In the recent survey [Ma] many older and new contributions to Napoleon’s
theorem, its generalizations and relatives are discussed. But the extensive list of
references in [Ma] shows that until now spatial analogues to the theorem were
(almost) not considered. This led B. WeilRbach [We] to extend a restricted version
of the theorem to Euclidean-space,n > 3. Here we will show that the con-
figuration described by Napoleon’s theorem can be considered as a special case
of a configuration which consists of ansimplexT and certain(n — 1)-spheres
associated witlT" by an almost arbitrarily chosen point. This yields the weighted
version of Napoleon’s theorem far> 3, and besides the metrical aspects of this
configuration also its affine properties become clear. In addition, a critical view on
the role of the Fermat—Torricelli point in this connection is presented.

1. The Configuration of Torricelli’'s

Our starting point is Napoleon’s theorem itself. Lgtp; p» C E? denote an arbi-

trary triangle with verticepo, p1, p2, and letpipip2, popip2, popip; be equi-
lateral triangles erected externally on the sidep®&#, po. Furthermore, we write
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Figure 1.

mg, m1, my for the circumcenters of these equilateral triangles. Then the following
statements hold.

(1) The trianglengmmy is equilateral (Napoleon’s theorem).
(2) The centroids of the triangles p1 p» andmgmyim, coincide.

Later on we will see that these are not the only properties of the described con-
figuration. For a large variety of further interesting properties we refer to [Ma].
For example, the circumcircles of the three erected triangles have a paimt
common, and this point also belongs to the three lines connecting the poansd

p}, respectively. And the three line segmepip; have equal length. (Moreover,
one might mention that a configuration with nearly analogous properties is obtained
if one erects equilateral triangl@gernally on the sides opgp1p», See again [Ma]

and, for a generalization, Figure 5 below.)

To the best of our knowledge, until now it has not been explicitly mentioned
that these relations remain true if the trianglgp,p» is degenerate, i.e., if the
points po, p1, p2 are collinear (Figure 1). And also the following case, where one
of the inner angles opop1p2 is larger than 2 /3, is worth mentioning (Figure 2).

E. Torricelli (cf. [To], Vol. I, Part 2, pp. 91-92) investigated this configuration in
connection with a famous question of P. de Fermat (cf. [Fe], p. 153), namely to
find the (unique) point minimizing the sum of distandgs — x|| + ||p1 — x|+

lp2 — x| betweenx e E? and the given pointgyg, p1, po. (An extensive dis-
cussion of this problem, with many historical corrections, was given by
[K-M].) However, in general the poinf (mentioned above) does not coincide with
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Figure 2.

this minimum point of{ po, p1, p2}. This coincidence holds if and only if all inner
angles ofpgop1p, are not larger thans2/3. If one of them is larger thann2/ 3

(see Figure 2), then the corresponding vertex yields the minimum point. This was
first noticed by B. Cavalieri, cf. [Ca], p. 508. However, here one should mention
an incorrect passage in the famous book [C—R], namely in Chapter VII, Section
5.3, where R. Courant and H. Robbins give the following two remarks (which we
reformulate in view of our Figure 2).

() The point £, from which the largest sid@;p, of pop1p, appears under an
angle of Zr/3 and the smaller sides under an anglergB (and which is
obtained by a construction analogous to that in Figure 1), solves the following
problem: to minimize the expression

Ipr—xll+lpa—xl—llpo—xIl. xePF.
(i) If all inner angles of the triangleg p, p» are smaller thans2/3, then|| p;—x ||
+ 1l p2—x 1|l = |l po—x |, x € E?, is least at the vertex.

Both these remarks from [C—R] are wrong. A counterexample to (i) is given
by Figure 3: the solution proposed by [C—R] would yield a minimum value of

21 pr—f I = Il po— f |, say (note that the shown triangle is isosceles). By
reflecting f at the line throughp, and p,, one obtainsf™* with | p1 — f* || +
I p2=f* Il =1l po—f*lI< 2l pr=f I = Il po— f Il sincell p; — f =l p: —

f* | fori € {1, 2}; but obviously|| po— f lI<ll po— f* |I. And a counterexample
to (ii) is simply given by an equilateral triangje p, po: the solution proposed by
[C—R] would yield a minimum value of 2 p1 — po ||, say. But|| p1 — x || +
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|l p2—x || — | po— x | is zero forx = p;, as well as forx = p,. The
correct solution to the modified Fermat’s problem (to minimjzep; — x || +
|l po—x || = Il po—x |, x € E?) was presented in [B—G], and since its descrip-

tion is relatively complicated, the interested reader is referred to that paper.
However, we notice that (like in the case of three inner anglésr/3) also in
the situation of Figure 2 the point is isogonicwith respect td{ pg, p1, ps}, i.e.,
the lines passing throughandp;, i € {0, 1, 2}, pairwise enclose an angle of 3.
For constructing isogonic points with respect{ i, p1, p»} it is not necessary
to erect equilateral triangles ovegp1, p1p2 and p,po. Having this in mind, we
want to construct Torricelli's configuration in a converse manner, i.e., by starting
with the given pointgyg, p1, p2 and f. On this way we get the points; as centers
of the circumcircles off pop1, fp1p2. fp2po, and the pointg; are obtained as in-
tersections of these circumcircles with the lines connecfirgnd p;, i € {0, 1, 2},
respectively. As we shall see, this point of view gives an immediate motivation for
suitable generalizations of Torricelli's configuration (not only with respect to the
dimension, but also regarding extensions to the weighted case).

2. Torricelli’'s Configuration with Weights in E”

Let po, p1,..., p, ben + 1 points inE", n > 2. For the sake of convenience,
we assume thén + 1)-tuple {po, p1, ..., p.} to be affinely independent. (This
could be neglected, but in the following we will ignore degenerate configurations.)
Thus {po, p1, ..., pa} is the vertex set of a nondegeneratsimplex T whose
facet hyperplanes we denote By, wherep; ¢ H; for eachi € {0,1,...,n}. In
addition, we writeS for the circumpshere df .
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Figure 4.

Now we denote byf € E" an arbitrary point neither contained $hnor in one
of the facet hyperplanes;. Thenf and eacl-tuple from{pq, p1, ..., p,}lieona
uniquely determined: —1)-sphere, and no two of these-1 spheres may coincide
resp. be concentric. We writg for these(n — 1)-spheres, wherg; ¢ S; for each
i €{0,1,...,n}. Furthermorem; denotes the center ¢f, andT* be the convex
hull of {mo, m1, ..., m,}. Itis easy to see that al§0* is a nondegenerate simplex.
By assumption we have; # f, and therefore one may consider the intersection
of the line throughf and p; with S;. If this intersection consists of two points, then
that one different fromy is denoted by;; and if the line passing throug}i and
pi is tangent taS;, then we sep” = f. Now one may introduce simplices (which
are ‘erected’ over the facets @f) by

T; == conv ({po. p1.---. pu: PIINPIY) .

and the erected simple has

1 . -
si=—— P+ pi
n+1 P jzop
J#i

as its centroid. This configuration, consisting of the poithe spheres; having

f in common, and further points and sets defined above, should be called the
dimensional (weighted) Torricelli configuratioim Figures 4 and 5, one can see
different possibilities fon = 2.
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Figure 5.

Regarding the history of the planar weighted case (shown in the two figures
above), the following remarks should be given. In 1877, the student E. Engelbrecht
[En] proved the statement that if three directly similar trianglgp1 p5, p1p2pg,
p2pop; With inner anglesy, g, y are externally erected on the sidesm@fpp»,
then the linespopg, p1pi, p2p; have a common poinf with the intersection
anglesa, 8, v, and also the circumcircles of the erected triangles interseft at
Although E. Torricelli investigated only the subcaseegjuilateral erected trian-
gles (Figure 2), J. Neuberg [Neu] called also this generalized figuréanielli
configuration see [B—M], pp. 1216-1219, for further historical remarks. The ‘twin
point’ f’ of f, analogously obtained by internally erected triangles (cf. Figure 5),
was investigated by A. Artzt [Ar], and already [MU] studied the relation betwgen
and f’ by a special Cremona transform of fifth degree, cf. [Sch] for recent results
about this. Furthermore, H. Uhlich [Uh] introduced angle coordinates by means of
the ‘weighted Torricelli figure’, and the possibly most general related configuration
was already studied by C.F.A. Jacobi [Ja], who only demanded that the pairs of
angles of the externally erected triangles at the same vertexaf, are equal to
each other.

Another historical line goes back to Th. Simpson, who generalized Fermat's
guestion toweighted distancesegarding three given points in an exercise of his
book [Sim], and probably W. Launhardt [Lau] was the first person who explicitly
attempted to consider the ‘weighted Torricelli figure’ as a resource for solving
the weighted generalization of Fermat's question. More detailed discussions of
this problem in view of industrial location were given by G. Pick [Pi], also with
cross connections to the theoryratiltifocal ellipseswhich occur as level curves
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regarding extensions of Fermat’s problem, see [Tsch], pp. 118-121, for first inves-
tigations of these curves. In [Ya], pp. 186-189, one may find four purely geometric
approaches to the weighted case of Fermat’s question. Further contributions to the
weighted Torricelli configuration were given or discussed by [Ri] and [Le].

3. Generalized Theorems

With the following theorems (which are higher-dimensional analogues to
Napoleon’s theorem and related statements) we want to clarify some relations be-
tween the pointf and other objects belonging to thedimensional weighted Tor-
ricelli configuration. The position of with respect td pg, p1, ..., p.}iS uniquely
determined by the barycentric coordinatesi = 0, 1, ..., n, of f regarding the
affine basiqpo, ..., p,), given by

f =%opo+ripr+ -+ AP, lo+Air+-+A, =1 1)
Here the property ¢ H; isreflected by; 0, i =0,1,...,n,and (1) implies
ro(po— )+ r(pr— )+ +2(pn— f) = 0.

Furthermoref ¢ {po, p1, ..., p,} Yields
Zy, f” =0, vi=alp—fI#O0 2

These real numberg; (which could be determined by the numbessand the
scalar productgp,, pi)) are qualified for the description of nearly all (metrical)
relations in the generalized Torricelli configuration. Based on these considerations
and notions we can formulate the following theorems.

THEOREM 1 The centersn; of the(n — 1)-spheresS;,i = 0,1, ..., n, are the
vertices of am-simplexT*. If V; denotes thén — 1)-volume of the facet df*
which is opposite ta:;, then

Vh:Vk:| Vh|3|)/k|, h,kE{o,l,...,l’l}. (3)

THEOREM 2 The centroids of the giverm-simplexT is also the centroid of the
mass pointss;, y2),i =0,1,...,n,i.e.,

n -1 n
S = )/iz )/izsl‘ . (4)
PG DD
i=0 i=0
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These theorems take a particularly simple shape if all the real numbers equal
up to their sign. This holds exactly if there exist numbers {—1, 1} such that

. pi—f
i T = 0. S
ggnm—ﬂ|0 ©

Under this assumption Theorem 1 says that Ak&mplex T* has facets with
equal (n — 1)-volumes. (Forn = 2 andn = 3 this even implies their con-
gruence.) In the planar case, (5) yields the isogonic property wfith respect
to {po, p1, p2}. Therefore Theorem 1 is a natural generalization of Napoleon’s
theorem, and Theorem 2 is a generalization of the second statement in Section
1 above.

For the sake of convenience, we set

Ipi—fIt(pi—f)=e;, i=01...,n (6)

Without loss of generality, the pointf can be identified with the origin. Thus,
setting f = o we have

_ b
I pi I

€;

Y yiei=o0, y#0, i=01...n (7)
i=0

First we have to prove the following lemma:

LEMMA. For the ranko(A) of the matrixA = ({eg, e1,...,e,}\{ei}), i =

0,1,...,n, we havep(A) = n, i.e., eachm-tuple from{eg, e4, ..., e,} is linearly
independent.
Proof. It is sufficient to prove this foir = 0. Suppose thdey, ..., ¢,} is linearly

dependent. Then there exist numberwith (z1, ..., 7,) # (0,...,0) and
Zfiei = ZE’ I pi 7 pi=o.
i=1 i=1
Settingz; || p; ||7'=: ¢/ fori =1,...,n, we get
n
Y tpi=o, (...t #.....0.
i=1

If ¥,/ = Owould hold, ther{ps, ..., p,} would be affinely dependent, which is
impossible (since evefpo, ..., p,} is affinely independent). On the other hand, if
T .7/ # 0would hold, then by := (£ ;t))~* -7/, i = 1,...,n, the relations
Z Ti,/pi =0, Z Tl‘,/ = 15 (8)
i=1

i=1
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would follow, a contradiction to the assumption that f does not belong to one
of the facet hyperplanes of tlhesimplex T = conu{po, p1, ..., Pu})- O

Proof of Theorem 1.The (n — 1)-sphereS; with centerm; contains the point
f = oif and only if its pointsx € E" satisfy the equality] x — m; ||°=|| m; |2,
i.e., |l x ||> —2(x, m;) = 0. Since the pointp; (with j # i) are contained irs;,
we have
I pj 12 =2(pj,mi) =I p; 12 =21l p; Il e, m;) =0

and by|| p; lI#0forj =0,1,...,nitfollows that

(ej.m)=31p;ll. Jj#i 9)

Also the scalar productg;, m;) can be explicitly described. Namely, starting with

0= (o,m;) = <Z Vjej’mi> = y;{e;, m;) + ZVj(ej,mi),
j=0 j=0

J#

we obtain
(eimy=31pill =58  8:= 2 vilpil- (10)
]:

Following our assumptions, the quantitycannot vanish, since this would mean

that p; € S;. Since the rank of{e,, e1, . .., e,}\{e;}) equalsz, the hyperplanes
Hf:={x:(ej,x) =5 pjl=0, j=01...n, (11)

either have exactly one point in common or present the facet hyperplanes of an

n-simplexT*. It is obvious that the latter case is true. By (9) and (10) the vertices

of T* are exactly the points:;. Since the defining equation of the hyperplaie

is given in a normalized form, one can derive the distances of the pajris the

facet hyperlanesi* (i.e., the lengths of the altitudes &f) by

1 )
hi:—-u, i=01,...,n. (12)
lvil 2
From this it follows that relation (3) in Theorem 1 is true. O

In addition one might remark that the inradius of 7* (i.e., the radius of the
insphere of that simplex) is determined by

1 1 1 2
TR 4+ Y D 13
" ho+ +hn |8|(|J/0| | Y D (13)
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Proof of Theorem 2.Since f = o, a pointp; from the line connecting® and
p: can be described by = §; p;, and if this point belongs tg;, we have also
I p; 12 =2(p;. m;) = 0. With the help of 82 || p; 1> =28 (pi. m;) =0, || p: I
O, | pi It pi = e:, as well as by (10) we get the condition

1
8i(Gi Il pi |l —2(ei, m;)) =6; (5i Il pi ll =1 pill +—_5> = 0.

1

Following the definition ofp; given above, the expression between the brackets
has to vanish§; = 1 — yfl | pi 1718 must hold, and the equality
. 1) Di 1)
p,':Pi——'—ZZPi——ei (14)
Yi I pill Vi
is obtained. This yields

1 : 1 : 8 5 e

e * = e | =4 — L

S : n+1 p[+jzop] l’l+1 jgopl yi61 N n+1 )/i’
J#

and the relation from Theorem 2 follows byeg + y1e1 + - - - + y,e, = 0. O

From the results derived above one might read off further geometric properties of
the generalized Torricelli configuration. For example, by (11) the facet hyperplane
H of the n-simplexT* is orthogonal to the segmept f and intersects it in its
midpoint; thus the lines throughp; and p; are orthogonal to the corresponding
facet hyperplanes df*, and by (12) and (14) the altitudes Bf satisfyh; = % I
pf — pi || foreachi € {0,1,...,n}.

On the other hand, one might ask for geometric properties or characterizations
of the simplicesT; ‘erected’ over the facets df. Only forn = 2 these simplices
have the same shape &S, see [Ma], Section 4, for a wide discussion of this case.
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