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Abstract. The famous theorem of Napoleon was recently extended to higher dimensions. With the
help of weighted vertices of ann-simplexT in E

n , n > 2, we present a weighted version of this
generalized theorem, leading to a natural configuration of(n− 1)-spheres corresponding withT by
an almost arbitrarily chosen point. Besides the Euclidean point of view, also affine aspects of the
theorem become clear, and in addition a critical discussion on the role of the Fermat–Torricelli point
within this framework is given.

0. Introduction

It is known that Napoleon Bonaparte was interested in mathematics and natural
sciences, but it is not completely verified whether the basic theorem discussed
here is due to him. Its first attribution seems to have been given in the book [Fa],
where it is accompanied by the paranthetical comment ‘Teorema proposto per la
dimonstrazione da Napoleone a Lagrange’ (p. 186). However, the theorem itself
occurred already in the Italian school book [Tu] from 1843, see also [La].

In the recent survey [Ma] many older and new contributions to Napoleon’s
theorem, its generalizations and relatives are discussed. But the extensive list of
references in [Ma] shows that until now spatial analogues to the theorem were
(almost) not considered. This led B. Weißbach [We] to extend a restricted version
of the theorem to Euclideann-space,n > 3. Here we will show that the con-
figuration described by Napoleon’s theorem can be considered as a special case
of a configuration which consists of ann-simplexT and certain(n − 1)-spheres
associated withT by an almost arbitrarily chosen point. This yields the weighted
version of Napoleon’s theorem forn > 3, and besides the metrical aspects of this
configuration also its affine properties become clear. In addition, a critical view on
the role of the Fermat–Torricelli point in this connection is presented.

1. The Configuration of Torricelli’s

Our starting point is Napoleon’s theorem itself. Letp0p1p2 ⊂ E
2 denote an arbi-

trary triangle with verticesp0, p1, p2, and letp∗0p1p2, p0p
∗
1p2, p0p1p

∗
2 be equi-

lateral triangles erected externally on the sides ofp0p1p2. Furthermore, we write
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Figure 1.

m0,m1,m2 for the circumcenters of these equilateral triangles. Then the following
statements hold.

(1) The trianglem0m1m2 is equilateral (Napoleon’s theorem).
(2) The centroids of the trianglesp0p1p2 andm0m1m2 coincide.

Later on we will see that these are not the only properties of the described con-
figuration. For a large variety of further interesting properties we refer to [Ma].
For example, the circumcircles of the three erected triangles have a pointf in
common, and this point also belongs to the three lines connecting the pointspi and
p∗i , respectively. And the three line segmentspip∗i have equal length. (Moreover,
one might mention that a configuration with nearly analogous properties is obtained
if one erects equilateral trianglesinternally on the sides ofp0p1p2, see again [Ma]
and, for a generalization, Figure 5 below.)

To the best of our knowledge, until now it has not been explicitly mentioned
that these relations remain true if the trianglep0p1p2 is degenerate, i.e., if the
pointsp0, p1, p2 are collinear (Figure 1). And also the following case, where one
of the inner angles ofp0p1p2 is larger than 2π/3, is worth mentioning (Figure 2).
E. Torricelli (cf. [To], Vol. I, Part 2, pp. 91–92) investigated this configuration in
connection with a famous question of P. de Fermat (cf. [Fe], p. 153), namely to
find the (unique) point minimizing the sum of distances‖p0 − x‖ + ‖p1 − x‖+
‖p2 − x‖ betweenx ∈ E

2 and the given pointsp0, p1, p2. (An extensive dis-
cussion of this problem, with many historical corrections, was given by
[K-M].) However, in general the pointf (mentioned above) does not coincide with
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Figure 2.

this minimum point of{p0, p1, p2}. This coincidence holds if and only if all inner
angles ofp0p1p2 are not larger than 2π/3. If one of them is larger than 2π/3
(see Figure 2), then the corresponding vertex yields the minimum point. This was
first noticed by B. Cavalieri, cf. [Ca], p. 508. However, here one should mention
an incorrect passage in the famous book [C–R], namely in Chapter VII, Section
5.3, where R. Courant and H. Robbins give the following two remarks (which we
reformulate in view of our Figure 2).

(i) The pointf , from which the largest sidep1p2 of p0p1p2 appears under an
angle of 2π/3 and the smaller sides under an angle ofπ/3 (and which is
obtained by a construction analogous to that in Figure 1), solves the following
problem: to minimize the expression

‖ p1− x ‖ + ‖ p2− x ‖ − ‖ p0− x ‖, x ∈ E
2.

(ii) If all inner angles of the trianglep0p1p2 are smaller than 2π/3, then‖ p1−x ‖
+ ‖ p2− x ‖ − ‖ p0− x ‖, x ∈ E

2, is least at the vertexp0.

Both these remarks from [C–R] are wrong. A counterexample to (i) is given
by Figure 3: the solution proposed by [C–R] would yield a minimum value of
2 ‖ p1 − f ‖ − ‖ p0 − f ‖, say (note that the shown triangle is isosceles). By
reflectingf at the line throughp1 andp2, one obtainsf ∗ with ‖ p1 − f ∗ ‖ +
‖ p2−f ∗ ‖ − ‖ p0−f ∗ ‖< 2 ‖ p1−f ‖ − ‖ p0−f ‖, since‖ pi−f ‖=‖ pi−
f ∗ ‖ for i ∈ {1,2}; but obviously‖ p0−f ‖<‖ p0−f ∗ ‖. And a counterexample
to (ii) is simply given by an equilateral trianglep0p1p2: the solution proposed by
[C–R] would yield a minimum value of 2‖ p1 − p0 ‖, say. But‖ p1 − x ‖ +

184769.tex; 9/12/1998; 15:08; p.3



216 H. MARTINI AND B. WEIßBACH

Figure 3.

‖ p2 − x ‖ − ‖ p0 − x ‖ is zero forx = p1, as well as forx = p2. The
correct solution to the modified Fermat’s problem (to minimize‖ p1 − x ‖ +
‖ p2 − x ‖ − ‖ p0 − x ‖, x ∈ E

2) was presented in [B–G], and since its descrip-
tion is relatively complicated, the interested reader is referred to that paper.

However, we notice that (like in the case of three inner angles< 2π/3) also in
the situation of Figure 2 the pointf is isogonicwith respect to{p0, p1, p3}, i.e.,
the lines passing throughf andpi, i ∈ {0,1,2}, pairwise enclose an angle ofπ/3.

For constructing isogonic points with respect to{p0, p1, p2} it is not necessary
to erect equilateral triangles overp0p1, p1p2 andp2p0. Having this in mind, we
want to construct Torricelli’s configuration in a converse manner, i.e., by starting
with the given pointsp0, p1, p2 andf . On this way we get the pointsmi as centers
of the circumcircles offp0p1, fp1p2, fp2p0, and the pointsp∗i are obtained as in-
tersections of these circumcircles with the lines connectingf andpi, i ∈ {0,1,2},
respectively. As we shall see, this point of view gives an immediate motivation for
suitable generalizations of Torricelli’s configuration (not only with respect to the
dimension, but also regarding extensions to the weighted case).

2. Torricelli’s Configuration with Weights in E
n

Let p0, p1, . . . , pn be n + 1 points inE n, n > 2. For the sake of convenience,
we assume the(n + 1)-tuple {p0, p1, . . . , pn} to be affinely independent. (This
could be neglected, but in the following we will ignore degenerate configurations.)
Thus {p0, p1, . . . , pn} is the vertex set of a nondegeneraten-simplex T whose
facet hyperplanes we denote byHi, wherepi /∈ Hi for eachi ∈ {0,1, . . . , n}. In
addition, we writeS for the circumpshere ofT .
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Figure 4.

Now we denote byf ∈ E
n an arbitrary point neither contained inS nor in one

of the facet hyperplanesHi. Thenf and eachn-tuple from{p0, p1, . . . , pn} lie on a
uniquely determined(n−1)-sphere, and no two of thesen+1 spheres may coincide
resp. be concentric. We writeSi for these(n− 1)-spheres, wherepi /∈ Si for each
i ∈ {0,1, . . . , n}. Furthermore,mi denotes the center ofSi, andT ∗ be the convex
hull of {m0,m1, . . . ,mn}. It is easy to see that alsoT ∗ is a nondegenerate simplex.
By assumption we havepi 6= f , and therefore one may consider the intersection
of the line throughf andpi with Si. If this intersection consists of two points, then
that one different fromf is denoted byp∗i ; and if the line passing throughf and
pi is tangent toSi, then we setp∗i = f . Now one may introduce simplices (which
are ‘erected’ over the facets ofT ) by

Ti := conv
({p0, p1, . . . , pn, p

∗
i }\{pi}

)
,

and the erected simplexTi has

si := 1

n+ 1

p∗i + n∑
j=0
j 6=i

pi


as its centroid. This configuration, consisting of the pointspi, the spheresSi having
f in common, and further points and sets defined above, should be called then-
dimensional (weighted) Torricelli configuration.In Figures 4 and 5, one can see
different possibilities forn = 2.
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Figure 5.

Regarding the history of the planar weighted case (shown in the two figures
above), the following remarks should be given. In 1877, the student E. Engelbrecht
[En] proved the statement that if three directly similar trianglesp0p1p

∗
2, p1p2p

∗
0,

p2p0p
∗
1 with inner anglesα, β, γ are externally erected on the sides ofp0p1p2,

then the linesp0p
∗
0, p1p

∗
1, p2p

∗
2 have a common pointf with the intersection

anglesα, β, γ , and also the circumcircles of the erected triangles intersect atf .
Although E. Torricelli investigated only the subcase ofequilateral erected trian-
gles (Figure 2), J. Neuberg [Neu] called also this generalized figure theTorricelli
configuration, see [B–M], pp. 1216–1219, for further historical remarks. The ‘twin
point’ f ′ of f , analogously obtained by internally erected triangles (cf. Figure 5),
was investigated by A. Artzt [Ar], and already [Mü] studied the relation betweenf

andf ′ by a special Cremona transform of fifth degree, cf. [Sch] for recent results
about this. Furthermore, H. Uhlich [Uh] introduced angle coordinates by means of
the ‘weighted Torricelli figure’, and the possibly most general related configuration
was already studied by C.F.A. Jacobi [Ja], who only demanded that the pairs of
angles of the externally erected triangles at the same vertex ofp0p1p2 are equal to
each other.

Another historical line goes back to Th. Simpson, who generalized Fermat’s
question toweighted distancesregarding three given points in an exercise of his
book [Sim], and probably W. Launhardt [Lau] was the first person who explicitly
attempted to consider the ‘weighted Torricelli figure’ as a resource for solving
the weighted generalization of Fermat’s question. More detailed discussions of
this problem in view of industrial location were given by G. Pick [Pi], also with
cross connections to the theory ofmultifocal ellipses, which occur as level curves
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regarding extensions of Fermat’s problem, see [Tsch], pp. 118–121, for first inves-
tigations of these curves. In [Ya], pp. 186–189, one may find four purely geometric
approaches to the weighted case of Fermat’s question. Further contributions to the
weighted Torricelli configuration were given or discussed by [Ri] and [Le].

3. Generalized Theorems

With the following theorems (which are higher-dimensional analogues to
Napoleon’s theorem and related statements) we want to clarify some relations be-
tween the pointf and other objects belonging to then-dimensional weighted Tor-
ricelli configuration. The position off with respect to{p0, p1, . . . , pn} is uniquely
determined by the barycentric coordinatesλi, i = 0,1, . . . , n, of f regarding the
affine basis(p0, . . . , pn), given by

f = λ0p0+ λ1p1+ · · · + λnpn, λ0+ λ1+ · · · + λn = 1. (1)

Here the propertyf /∈ Hi is reflected byλi 6= 0, i = 0,1, . . . , n, and (1) implies

λ0(p0− f )+ λ1(p1− f )+ · · · + λn(pn − f ) = o.

Furthermore,f /∈ {p0, p1, . . . , pn} yields

n∑
i=0

γi
pi − f
‖ pi − f ‖ = o, γi := αi ‖ pi − f ‖ 6= 0. (2)

These real numbersγi (which could be determined by the numbersαi and the
scalar products〈ph, pk〉) are qualified for the description of nearly all (metrical)
relations in the generalized Torricelli configuration. Based on these considerations
and notions we can formulate the following theorems.

THEOREM 1. The centersmi of the(n − 1)-spheresSi, i = 0,1, . . . , n, are the
vertices of ann-simplexT ∗. If Vi denotes the(n − 1)-volume of the facet ofT ∗
which is opposite tomi, then

Vh : Vk =| γh |:| γk |, h, k ∈ {0,1, . . . , n}. (3)

THEOREM 2. The centroids of the givenn-simplexT is also the centroid of the
mass points(si, γ 2

i ), i = 0,1, . . . , n, i.e.,

s =
(

n∑
i=0

γ 2
i

)−1 n∑
i=0

γ 2
i si . (4)
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These theorems take a particularly simple shape if all the real numbersγi are equal
up to their sign. This holds exactly if there exist numbersεi ∈ {−1,1} such that

n∑
i=0

εi
pi − f
‖ pi − f ‖ = o. (5)

Under this assumption Theorem 1 says that then-simplex T ∗ has facets with
equal (n − 1)-volumes. (Forn = 2 andn = 3 this even implies their con-
gruence.) In the planar case, (5) yields the isogonic property off with respect
to {p0, p1, p2}. Therefore Theorem 1 is a natural generalization of Napoleon’s
theorem, and Theorem 2 is a generalization of the second statement in Section
1 above.

For the sake of convenience, we set

‖ pi − f ‖−1 (pi − f ) =: ei, i = 0,1, . . . , n. (6)

Without loss of generality, the pointf can be identified with the origin. Thus,
settingf = o we have

ei = pi

‖ pi ‖ ,
n∑
i=0

γiei = o, γi 6= 0, i = 0,1, . . . , n. (7)

First we have to prove the following lemma:

LEMMA. For the rank%(A) of the matrixA = ({e0, e1, . . . , en}\{ei}), i =
0,1, . . . , n, we have%(A) = n, i.e., eachn-tuple from{e0, e1, . . . , en} is linearly
independent.

Proof.It is sufficient to prove this fori = 0. Suppose that{e1, . . . , en} is linearly
dependent. Then there exist numbersτi with (τ1, . . . , τn) 6= (0, . . . ,0) and

n∑
i=1

τiei =
n∑
i=1

τi ‖ pi ‖−1 pi = o.

Settingτi ‖ pi ‖−1=: τ ′i for i = 1, . . . , n, we get

n∑
i=1

τ ′i pi = o, (τ ′i , . . . , τ
′
n) 6= (0, . . . ,0).

If 6n
i=1τ

′
i = 0 would hold, then{p1, . . . , pn}would be affinely dependent, which is

impossible (since even{p0, . . . , pn} is affinely independent). On the other hand, if
6n
i=1τ

′
i 6= 0 would hold, then byτ ′′i := (6n

i=1τ
′
i )
−1 · τ ′i , i = 1, . . . , n, the relations

n∑
i=1

τ ′′i pi = o,
n∑
i=1

τ ′′i = 1, (8)
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would follow, a contradiction to the assumption thato = f does not belong to one
of the facet hyperplanes of then-simplex T = conv({p0, p1, . . . , pn}). 2

Proof of Theorem 1.The (n − 1)-sphereSi with centermi contains the point
f = o if and only if its pointsx ∈ E

n satisfy the equality‖ x − mi ‖2=‖ mi ‖2,
i.e.,‖ x ‖2 −2〈x,mi 〉 = 0. Since the pointspj (with j 6= i) are contained inSi,
we have

‖ pj ‖2 −2〈pj ,mi〉 =‖ pj ‖2 −2 ‖ pj ‖ 〈ej ,mi〉 = 0

and by‖ pj ‖6= 0 for j = 0,1, . . . , n it follows that

〈ej ,mi〉 = 1
2 ‖ pj ‖, j 6= i. (9)

Also the scalar products〈ei,mi〉 can be explicitly described. Namely, starting with

0= 〈o,mi〉 =
〈

n∑
j=0

γjej ,mi

〉
= γi〈ei,mi〉 +

n∑
j=0
j 6=i

γj 〈ej ,mi〉,

we obtain

〈ei,mi〉 = 1
2 ‖ pi ‖ − 1

2γi
δ, δ :=

n∑
j=0

γj ‖ pj ‖ . (10)

Following our assumptions, the quantityδ cannot vanish, since this would mean
thatpi ∈ Si. Since the rank of({eo, e1, . . . , en}\{ei}) equalsn, the hyperplanes

H ∗j := {x : 〈ej , x〉 − 1
2 ‖ pj ‖= 0}, j = 0,1, . . . , n, (11)

either have exactly one point in common or present the facet hyperplanes of an
n-simplexT ∗. It is obvious that the latter case is true. By (9) and (10) the vertices
of T ∗ are exactly the pointsmi. Since the defining equation of the hyperplaneH ∗i
is given in a normalized form, one can derive the distances of the pointsmi to the
facet hyperlanesH ∗i (i.e., the lengths of the altitudes ofT ∗) by

hi = 1

| γi | ·
| δ |
2
, i = 0,1, . . . , n. (12)

From this it follows that relation (3) in Theorem 1 is true. 2

In addition one might remark that the inradiusr∗ of T ∗ (i.e., the radius of the
insphere of that simplex) is determined by

1

r∗
= 1

h0
+ · · · + 1

hn
= 2

| δ |(| γ0 | + · · · + | γn |). (13)

184769.tex; 9/12/1998; 15:08; p.9
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Proof of Theorem 2.Sincef = o, a pointp∗i from the line connectingf and
pi can be described byp∗i = δipi, and if this point belongs toSi, we have also
‖ p∗i ‖2 −2〈p∗i , mi〉 = 0. With the help of δ2

i ‖ pi ‖2 −2δi〈pi,mi〉 = 0, ‖ pi ‖6=
0, ‖ pi ‖−1 pi = ei , as well as by (10) we get the condition

δi(δi ‖ pi ‖ −2〈ei,mi〉) = δi
(
δi ‖ pi ‖ − ‖ pi ‖ + 1

γi
δ

)
= 0.

Following the definition ofp∗i given above, the expression between the brackets
has to vanish,δi = 1− γ −1

i ‖ pi ‖−1 δ must hold, and the equality

p∗i = pi −
δ

γi
· pi

‖ pi ‖ = pi −
δ

γi
ei (14)

is obtained. This yields

si := 1

n+ 1

p∗i + n∑
j=0
j 6=i

pj

 = 1

n+ 1

 n∑
j=0

pj − δ

γi
ei

 = s − δ

n+ 1
· ei
γi
,

and the relation from Theorem 2 follows byγ0e0+ γ1e1 + · · · + γnen = o. 2

From the results derived above one might read off further geometric properties of
the generalized Torricelli configuration. For example, by (11) the facet hyperplane
H ∗i of the n-simplexT ∗ is orthogonal to the segmentpif and intersects it in its
midpoint; thus the lines throughpi andp∗i are orthogonal to the corresponding
facet hyperplanes ofT ∗, and by (12) and (14) the altitudes ofT ∗ satisfyhi = 1

2 ‖
p∗i − pi ‖ for eachi ∈ {0,1, . . . , n}.

On the other hand, one might ask for geometric properties or characterizations
of the simplicesTi ‘erected’ over the facets ofT . Only for n = 2 these simplices
have the same shape asT ∗, see [Ma], Section 4, for a wide discussion of this case.
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