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JHA AND SAVARAN’S GENERALISATION OF NAPOLEON’S THEOREM

MICHAEL DE VILLIERS, HANS HUMENBERGER, BERTHOLD SCHUPPAR

ABSTRACT. In this paper we present a novel generalisation of Napoleon’s theorem to a
hexagon with equilateral triangles constructed on the sides as well as a purely geometric
proof of the result.

In December 2021, two Grade 11 schoolboys from India, Jayendra Jha and Sankalp Savaran,
using dynamic software discovered the following apparently new generalisation of Napoleon’s
theorem, and posted the problem at Stack Exchange (2021).

Figure 1
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Jha & Savaran’s Problem

Given a hexagon A1A;A3zA4A5A¢ with equilateral triangles constructed on the sides,
either all inwardly or all outwardly, and the apexes of the equilateral triangles are la-
belled B; as shown in Figure 1. If Gy, Gz and Gs are the respective centroids of AB¢B1B,,
AB;B3B4 and AB4BsBg, then AG;G3Gs is an equilateral triangle. (Similarly, the respective
centroids of AB1B;B3, AB3B4Bs and ABs5BgBj, form an equilateral triangle AG,G4Gg.) A
dynamic sketch of the above result is available for the reader to explore at:

http://dynamicmathematicslearning.com/new-napoleon-generalisation.html

Note that if, for example we let points A; and Ag coincide, as well as A, and Az, and Ay
and As, then Jha and Savaran’s result reduces to Napoleon’s theorem. Jha and Savaran’s
problem can be easily proved with the following two useful theorems:

Theorem 1 (120° rhombus theorem)

Given a quadrilateral ABCD with four equilateral triangles AABE, ABCF, ACDG, and
ADAH constructed on its sides, all inwardly or all outwardly. The outward construction
is shown in Figure 2. If T and T3 are the respective centroids of AABE and ACDG, and
G, and Gy are the respective centroids of AEGF and AEGH respectively, then T1G,T3Gy4
is a rhombus with angles 120° and 60° (equivalently: AG,T3G4 and AT; GGy are two
adjacent equilateral triangles).

Figure 2

Remarks:

e Theorem 1 is very useful, important in its own right, and quite challenging to
prove. We think it deserves to be better known, hence we’d like to propose the
mentioned catchy name for it.

e For proving Theorem 1 it suffices to show T;G; = G2Tz and ZT1 Gy Tz = 120°.
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Pompe’s Theorem

Given a hexagon ABCDEF with AB = BC, CD = DE and EF = FA, and angles /B +
ZD + ZF = 360°, then the respective angles of ABDF are /B/2, /D /2 and ZF/2.

A proof of Pompe’s theorem is given in Pompe (2016) as well as in De Villiers & Humen-
berger (2021), and a proof of Theorem 1 will be given further on. We shall now use the
two aforementioned theorems to prove Jha and Savaran’s generalisation of Napoleon’s
theorem.

Figure 3

Proof of Jha & Savaran’s result

Consider Figure 3, where T, Ty and T¢ are the respective centroids of the equilateral
triangles on sides AyAsz, AsAs and AgAj. Then according to Theorem 1, ZT,G3Ty =
ZT4G5T6 = ZT6G1T2 = 1200, and T2G3 = G3T4, T4G5 = G5T6, and T6G1 = Gsz.
The hexagon G1T,G3T4G5Ts therefore meets the requirements of Pompe’s theorem, and
hence, it follows that ZG1G3Gs = £G3Gs5G1 = £Gs5G1G3 = 60°, and this completes the
proof. Alternatively, after proving that £ZT,G3Ty = £T4Gs5Te = LT¢G1 T, = 120°, and
T>Gs = G3Ty, TaGs = Gs5Tg, and TgG; = G113 it’s also easy to see that one can construct
equilateral triangles on the sides T> Ty, T4Ts, and T T, so that their centroids coincide with
G1, G3 & Gs. Hence, directly from Napoleon’s theorem, it then follows that AG;G3Gs is
an equilateral triangle.
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Remarks:

o Note that the result also holds if the equilateral triangles lie inwardly, and even if
the original hexagon A; is concave or crossed. This can easily be checked by drag-
ging a dynamic convex configuration into these cases, and is left for the reader to
verify, as well as to prove (by possible modification of the above proofs).

e Also note with reference to Figure 1, that the six centroids Gi, G, G3, Gy, G5 &
Gé, respectively of AB(,Ble, AB]B2B3, ABngB4, AB3B4B5, AB4B5B6 & AB5BGBl,
form a hexagon with opposite sides equal and parallel (De Villiers, 2007; Lord,
2008). Hence, from the half-turn symmetry of the formed parallelo-hexagon, the
two equilateral triangles AG1G3Gs and AG,G4Gg are congruent via a half-turn
around the point of symmetry of the parallelo-hexagon. (In addition, its point of
symmetry is also the common centroid of the six centroids G;).

Proof of Theorem 1
We shall now make use of the following two Lemmas to prove Theorem 1.

Lemma 1 (Four equilateral triangles)

Let AABC be a triangle and G its centroid. Now construct two concentric circles ¢; and
c2 with centre G, one through A and the other through B, and two equilateral triangles
AAA’A" and ABB'B” with vertices on the respective circles (here A’ denotes the point
rotated around G by 120° counter-clockwise, analogously with B’). Then the triangles
ACA"B’" and ACB” A’ are equilateral too (Figure 4).

Figure 4

Proof: The first important thing to notice here is that the lines A’A” and BC bisect each
other. To see the reason for this phenomenon, extend AG beyond G by the half of its
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length, then it is clear that the new endpoint is on the one hand the midpoint of A’A”
and on the other hand, the midpoint of BC. Therefore, A’'BA”C is a parallelogram, and
analogously B"CB’A. Hence, B'A = CB” and BA” = A'C. But we also know by 120° ro-
tations with centre G that B’A = B” A’ = BA” and this means that ACB"” A’ is equilateral.
And analogously one can prove that ACA”B’ is equilateral.

Lemma 2

Let AABC be a triangle (blue) with centroid S. Then at point C an arbitrary equilateral
triangle is suspended (red), the other vertices are D, E. With the line segments AD and
BE two further equilateral triangles are constructed (green), F and G are their centroids.
And then with the line segment FG a fourth equilateral triangle is constructed (black; the
orientation of the equilateral triangles is as shown in Figure 5). Finally, one can observe:
The centroids of this last (black) equilateral triangle and the initial AABC coincide (S).

A V‘
Figure 5

Proof: We have to show that the map F > G is a rotation with centre S and angle 120°
(counter-clockwise).
This map consists of three components:

(1) F = D is a spiral similarity with centre A, angle 30° (counter-clockwise) and
factor v/3,

(2) D — Eis a rotation with centre C and angle 60° (counter-clockwise),

(3) E — G is a spiral similarity with centre B, angle 30° (counter-clockwise) and

1
factor 7

In the composition of these components the product of the factors equals 1, the sum of
the rotation angles is 120° (counter-clockwise). Hence, it is a counter-clockwise rotation
by 120°, we have to determine its centre. The centre is supposed to be S, thus we have
to prove: S is the fixed point of this map (Figure 6).
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Figure 6

The spiral similarity (1) maps S onto S, where we have ZS5'SA = 120°. Let S” be the
inverse image of S under the spiral similarity (3), where we have ZS”SB = 120°. Ac-
cording to Lemma 1 we know that ACS’S” is equilateral, hence ZS'CS” = 60°, and S’
maps under the rotation (2) onto S”, altogether this means: Under the composition of
the three mentioned maps we have S — S, thus S is the fixed point and the centre of the
counter-clockwise rotation by 120° which yields F > G.

Proof of Theorem 1

The points Ty, T3, G, in Theorem 1 correspond to the points G, F, S in Lemma 2, the
points G, E, F of Theorem 1 correspond to the points A, B, C in Lemma 2, and the points
C,S', S” of the proof of Lemma 2 correspond to the points C, A”, B’ of Lemma 1.

Concluding Remarks

Note that the hexagon G1T,G3T4G5Ts in Figure 3 is also a Haag hexagon, which is de-
fined as a hexagon ABCDEF with AB = BC, CD = DE, EF = FAand /B = /D =
ZF = 120° (Schattschneider, 1990, p. 90). Not only does a Haag hexagon tile, but also
as the famous Dutch artist Escher apparently discovered (Rigby, 1991), it has its main di-
agonals concurrent (in this case, G1 Ty, T>Gs, and G3Tp). This concurrency follows easily
from Jacobi’s generalisation of the Fermat-Torricelli point of a triangle (De Villiers, 2014).
Another interesting result related to the configurations in Figures 1 and 3 is the following
theorem (Oai, 2015): If equilateral triangles are constructed all outwardly or all inwardly,
on each side of a hexagon, then the midpoints of the segments connecting the centroids
of opposite triangles form another equilateral triangle.
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Figure 7

Several other equilateral triangles are also embedded in the configuration of Theorem 1
shown in Figure 2. For example, consider Figure 7 where Tj is the centroid of ABCF and
Q1 and Q; are the respective centroids of AEBF and AFCG. From a known result related
to Napoleon’s theorem (attributed to Dao Thanh Oai by Bogomolny, date unknown),
we then have LZT1Q1T, = £LT,Q,T3 = 120°, T1Q1 = QT and ThbQ» = Q»T3. Since
LT3G4T7 = 120° and T3G4 = G4T; from Theorem 1, it follows that AQ1Q»Gy is also

equilateral.

Lastly, since all equilateral triangles are directly similar, many more (in fact, infinitely
many) different equilateral triangles can be associated with the configurations in Figures
1 and 2 by the use of a fundamental theorem of similarity, namely: If F and F’ are any
two directly similar figures with points P in F corresponding to points P’ in F/, and the
lines PP’ are divided in the ratio of 7 : (1 —r), thatis, at points P = (1 —r)P + rP’, then
the new figure F” formed by the points P” will be directly similar to F and F’ (DeTemple
Harold, 1996; Fried, 2021). For example, if the midpoints (r = %) of the line segments

connecting corresponding points of a pair of equilateral triangles on opposite or adja-
cent sides of a quadrilateral or hexagon are constructed, another equilateral triangle is

formed.
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It is now left to the reader to identify other equilateral triangles embedded in the config-
urations of Figures 1 and 2.
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