From the Solutions to Reader Investigations, Vol 9, no. 2, 2005

Definition 3: A median of a tetrahedron is the join of a vertex to the centroid of the opposite face.

Theorem 3: The four medians of a tetrahedron meet at the centre of mass *G*.

Proof: Let **a**, **b**, **c**, **d** be coordinate vectors of *A*, *B*, *C*, *D*. Then **e** = 1 3 $(\mathbf{b} + \mathbf{c} + \mathbf{d})$ is the centroid *E* of *BCD*. Let *G* be the point $g =$ 1 4 $(a + b + c + d)$. Then *G* lies on the median *AE* because $g =$ 1 4 **a** + 3 **e**. Similarly *G* lies on all four medians.

To verify that *G* is the centre of mass of the tetrahedron, note that the line containing *BE* divides triangle *BCD* into two triangles of equal area. Therefore the plane containing *ABE* divides the tetrahedron into two subtetrahedron of equal volume (they also have the same height). Therefore the centre of mass lies in this plane, and similarly in the plane containing *ACE*, and hence on *AE*. Similarly the centre of A

mass lies on all the medians, and hence is *G*.

4

Definition 4: The altitude of a tetrahedron through *A* is the line perpendicular to *BCD*.

In general the four altitudes of a tetrahedron do not meet. It suffices to give a counter-example. Consider Dehn's tetrahedron *ABCD* inscribed in a cube as shown. The altitudes through *A*, *D* are *AB*, *CD* which do not meet.

4. This result was experimentally discovered with *Sketchpad* by Michael de Villiers in 2004, though it is not known whether it is original. Two different, elegant proofs by Michael Fox from Leamington Spa, Warwickshire, UK, e-mail: mdfox@foxleam.freeserve.co.uk ; are given below.

(a) Proof by vectors

Given: Quadrilateral *ABCD* has perpendicular diagonals and triangles *AEB*, *AHD*, *CFB*, *CGD* are similar.

To prove: The lengths *FH*, *EG* are equal.

Proof: We use vector displacements, taking *A* as $(a, 0)$, *B* as $(0, b)$, *C* as $(-c, 0)$, *D* as $(0, -d)$.

Triangle *BE'A* is right angled at *B*, with *E'* lying on *AE*.

Displacement **AB** is $[-a, b]$, so, if $t = \tan(\angle BAE)$, then $BE' = [ta, tb]$, and $AE' = AB + BE' =$ $[-a + tb, b + ta].$

If
$$
\frac{AE}{AE} = s
$$
, then $\mathbf{AE'} = s \mathbf{AE} = [s(-a + tb), s(b + ta)].$

The other vector displacements follow similarly.

Then $\bf{FH} = \bf{FC} + \bf{CA} + \bf{AH} = [a + c, 0] + s[-a - c + t(b + d), -b - d - t(a + c)];$

and $GE = GC + CA + AE = [a + c, 0] + s [-a - c + t(b + d), b + d + t(a + c)].$

Since the *x*-components in each expression are equal, and the *y*-components are equal and opposite, the displacements have equal magnitudes, i.e. the lengths *FH*, *GE* are equal.

We also see that these lines are equally inclined to the diagonals *AC*, *BD*.

Proof: Since $FH = FC + CA + AH$, and $GE = GC + CA + AE$, both containing CA, the result would follow if the vectors $FC + AH$, $GC + AE$ had equal magnitudes and were equally inclined to **CA**.

Translate *DC*, *GD* by vector **CA**. Their images are D_1A , G_1A , thus $\mathbf{GC} + \mathbf{AE} = \mathbf{G}_1\mathbf{A} + \mathbf{AE} = \mathbf{G}_2\mathbf{A} + \mathbf{AE} = \mathbf{G}_1\mathbf{A} + \mathbf{AE} = \mathbf{G}_1\mathbf{A} + \mathbf{AE} = \mathbf{G}_1\mathbf{A} + \mathbf{AE} = \mathbf{G}_1\mathbf{A} + \mathbf{AE} = \mathbf{G$ G_1E .

In the similar triangles, let $\angle EAB = ... = \theta$, and $\frac{AE}{AD}$ \overline{AB} = *k*, then the spiral similarity (*k*, θ) takes AB to AE and CD to CG. Thus AD_1 goes to AG_1 . It follows easily that this similarity takes D_1B , i.e. $D_1A + AB$, to $G_1A + AE$, that is, G_1E .

If we translate *DA*, *HA* by vector **AC** we obtain D_2C , H_2C , and a similar argument shows that the spiral similarity $(k, -\theta)$ takes D_2B to H_2F .

Now triangle BD_2D_1 is isosceles: BD is \perp to D_2D_1 , and D is the midpoint of that line, so BD_2 , BD_1 are equal in length and are equally inclined to D_2D_1 , i.e. to *CA*, although with opposite angles of rotation, say φ .

Consequently, the opposite spiral similarities give images G_1E , H_2F that are equal in length, and equally inclined to *CA*, at an angle $\theta + \varphi$, and the result follows.

"*Statistics can be used to support anything - especially statisticians*" - Franklin

Jones, **Women's Realm**