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Relations between the sides and diagonals of a set of hexagons  
MICHAEL DE VILLIERS 

 
“The art is not in the “truth” but in the explanation, the argument. It is the argument itself 
which gives the truth its context, and determines what is really being said and meant. 
Mathematics is the art of explanation. ” – Paul Lockhart [1] 
 

An interesting parallelogram theorem states that the sum of the squares of the sides of a 

parallelogram is equal to the sum of the squares of its diagonals. For a parallelogram 

ABCD, since opposite sides are equal, we therefore have that 

! 

2(AB 2 +BC 2 ) = AC 2 +BD2 . 

It is most easily proved with the cosine rule or using vectors. The result is also called the 

“Parallelogram Law” on Wikipedia [2] and some other sites, but this name may be easily 

confused with the perhaps better-known parallelogram law of forces in physics. 

 Recently the author was considering how this theorem might be generalized to a 

parallelo-hexagon, in other words, what relationships, if any, could be found between the 

sum of the squares of the sides of a hexagon with opposite sides equal and parallel, and 

the sums of the squares of its major diagonals (which connect opposite vertices). Using 

Sketchpad, the author experimentally found the following interesting inequality for a 

parallelo-hexagon ABCDEF (see Figure 1): 

! 

AD2 +BE 2 +CF 2 " 4(AB 2 +BC 2 +CD2 ). The 

reader is now invited to explore the result dynamically at the URL 

http://dynamicmathematicslearning.com/parm-law-hexagon.html before continuing. 

 
Figure 1 
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From experimental exploration up to that point, the author thought the equality was only 

true for a regular hexagon, and is easy to prove, since a regular hexagon has all sides 

equal and diagonals equal, and AB= AD/2, from which the result follows. However, as we 

shall see later from the general proof, under certain conditions, the equality holds for a 

more general type of parallelo-hexagon. Further exploration also revealed that the 

inequality was valid even for a concave or crossed parallelo-hexagon. But why was the 

result true? The experimental conviction obtained from dragging provided no explanation 

at all: all it gave was more and more empirical evidence (compare [3]). 

 After trying unsuccessfully for a while to deduce the general result by applying 

the parallelogram theorem to the three different parallelograms that make up a parallelo-

hexagon, the author decided to switch to a coordinate geometry approach. 

Proof 

Consider Figure 1 where a parallelo-hexagon is placed on a coordinate grid with vertices 

C, D, A and B having respective coordinates (0, 0); (a, 0); (b, c) and (d, e). It then follows 

from the symmetric properties of a parallelo-hexagon that the respective coordinates of 

vertices E and F are (a + b - d, c - e) and (a + b, c). This gives us the following two 

equations: 

! 

4(AB 2 +BC 2 +CD2 ) = 4 (c" e)2 + (b" d)2 + d 2 + e2 + a2[ ] 

! 

AD2 +BE 2 +CF 2 = c2 + (b" a)2 + (a+b"2d)2 + (c"2e)2 + (a+b)2 + c2 

Expanding and subtracting the second equation from the first, gives us: 

! 

4(AB 2 +BC 2 +CD2 )" (AD2 +BE 2 +CF 2 ) = a2 +b2 + c2 + 4d 2 + 4e2 "2ab+ 4ad " 4bd " 4ce
= (a"b)2 + 4d(a"b)+ 4d 2 + (c"2e)2

= (a"b+2d)2 + (c"2e)2,
which completes the proof, since the difference of these equations is the sum of two 

squares, which is always greater and equal to zero.  

Looking back 

From this equation, note that equality will only hold when a – b + 2d = 0 and c = 2e; 

hence, the parallelo-hexagon need not be regular as originally thought. This is therefore 

an illustrative example of what is called the discovery function of proof in [4], whereby 

proving a result might lead to further unexpected discoveries. 
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Figure 2 

More-over, we can easily deduce from these conditions for equality by substituting d = 

(b-a)/2 and e = c/2 as shown in Figure 2, that a parallelo-hexagon has the property 

! 

AD2 +BE 2 +CF 2 = 4(AB 2 +BC 2 +CD2 ), if and only if, its diagonals are parallel to a pair 

of opposite sides! For example, it’s easy to see in Figure 2 that BE has the same zero 

slope as AF and CD, and that AB, FC and ED all have the same slope c/(a + b), and that 

BC, AD and FE all have the same slope c/(b - a). Conversely, from Figure 1, if we have 

BE // AF, then e = c – e which gives us the one condition c = 2e. And if AD is also 

parallel to BC in Figure 1, then c/(b – e) = e/d which simplifies to the other condition d = 

(b – a)/2.  

A simpler, alternative proof 

The author is grateful to the anonymous referee for pointing out that if we chose the 

centre of symmetry of the parallelo-hexagon as origin, and A, B and C respectively as (a, 

d), (b, e) and (c, f) with D, E and F then respectively becoming (-a, -d), (-b, -e) and (-c, -

f), the result reduces algebraically more easily to a sum of two squares, e.g. 

! 

4 (a"b+ c)2 + (d " e+ f )2( ). This shows how critical the choice of origin can sometimes 

be. 

Another generalization 

Of related interest is that this parallelogram theorem generalizes to any quadrilateral 

ABCD, and states that 

! 

AB 2 +BC 2 +CD2 + AD2 = AC 2 +BD2 + 4x 2  where x is the distance 

between the midpoints of the diagonals [5]. Douglas [6] goes even further and generalizes 
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the result to any 2n-gon. The special case of the Douglas theorem for a parallelo-hexagon 

is shown in Figure 3, for which the following holds:  

! 

2(AB 2 +BC 2 +CD2 )"2(AC 2 +CE 2 +EA 2 )+ AD2 +BE 2 +CF 2 = 9MN 2, with M and N the 

respective centroids of triangles ACE and BDF.  

 
Figure 3 

If we have a parallelo-hexagon with the property as shown in Figure 2 with diagonals 

parallel to opposite sides, then it’s easy to see that M and N will coincide. By substituting 

the previous equality into Douglas’ one above, the following two relationships will then 

hold for this special type of parallelo-hexagon:  

! 

3(AB 2 +BC 2 +CD2 ) = (AC 2 +CE 2 +EA 2 ) and

! 

3(AD2 +BE 2 +CF 2 ) = 4(AC 2 +CE 2 +EA 2 ). 

Further experimental exploration revealed that for a general parallelo-hexagon the 

following equality holds: 

! 

(AB 2 +BC 2 +CD2 )+ (AC 2 +CE 2 +EA 2 ) = AD2 +BE 2 +CF 2.  

This result can be easily proved using the coordinates in Figure 1 and is left to the reader 

check.  

Rewriting this equality as: 

! 

(AB 2 +BC 2 +CD2 )" (AD2 +BE 2 +CF 2 ) = "(AC 2 +CE 2 +EA 2 ) and substituting it in 

Douglas’ equality, we obtain: 

! 

4(AB 2 +BC 2 +CD2 )" (AD2 +BE 2 +CF 2 ) = 9MN 2 .  

Since the right hand side of this equality for a parallelo-hexagon is always greater 

and equal to zero, we again obtain our inequality of earlier, with equality holding, when 

M and N coincide (giving us a parallelo-hexagon with diagonals respectively parallel to a 

pair of opposite sides). 
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A conjecture and its counter-example 

While initially investigating a possible relationship between the sum of the squares of the 

sides of a parallelo-hexagon and the sum of the squares of its main diagonals, the author 

made the following lower bound conjecture for a convex parallelo-hexagon: 

! 

3(AB 2 +BC 2 +CD2 ) < AD2 +BE 2 +CF 2 . 

The result is valid if all the angles of the parallelo-hexagon are obtuse and can be 

proved as follows. Applying the parallelogram law to parallelogram ABDE in Figure 1, 

we obtain 

! 

2(AB 2 +BD2 ) = AD2 +BE 2. But if angle BCD in triangle BCD is obtuse, it 

follows that 

! 

BD2 > BC 2 +CD2. Therefore, 

! 

2(AB 2 +BC 2 +CD2 ) < AD2 +BE 2. Similarly, if 

angles ABC and BAF with respect to parallelograms ACDF and BCEF are obtuse, it 

follows that 

! 

2(CD2 + AB 2 +BC 2 ) < AD2 +CF 2 and 

! 

2(AB 2 +BC 2 +CD2 ) < BE 2 +CF 2. By 

adding these three equations and simplifying, the lower bound follows: 

! 

3(AB 2 +BC 2 +CD2 ) < AD2 +BE 2 +CF 2 . 

Figure 4 

However, this conjecture is not generally true for convex parallelo-hexagons. The author 

is grateful to the referee for giving the following simple counter-example as shown in 

Figure 4 for a symmetrically placed hexagon. Let A, B and C be (1,2), (0,2), (-4, 1), etc. 

The hexagon is convex, but as is left to verify by the reader 

! 

3(AB 2 +BC 2 +CD2 ) =108 > AD2 +BE 2 +CF 2 =104. (The dynamic sketch at the URL 
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given earlier can also be used to produce a counter-example, e.g. by dragging A to 

shorten AF and dragging E to make opposite angles B and E more acute.) 

Figure 5 

The referee also points out that we can generate families of convex parallelo-hexagons 

for which the inequality fails. For one such family take B, C as (1, 1), (-1, 1), etc., and A, 

D as (x, y), (-x, -y), satisfying x > 3 + √5, -1 < y < 1 (see Figure 5). In fact, there is always 

a critical circle that depends on B, C and their images E, F. If A lies inside this circle the 

inequality holds. On the circumference it becomes an equality, outside the circle the 

opposite inequality is true. In the example in Figure 5, the centre of the circle is at (3, 0) 

and has radius √5. 

Concluding comments 

Borwein [7] and others have remarked that it is necessary in the light of modern 

computing technology to re-evaluate the role of proof, as well as the teaching of it.  As 

we have seen in this investigation, the conviction obtained from the dynamic geometry 

exploration motivated the search for a proof, and had little to do with the removal of 

doubt. However, proving the result gave useful insight leading to further discoveries.  

Since this exploration should be easily accessible to high school learners, it could 

be adapted into a worksheet to illustrate the so-called ‘discovery’ function of proof, as 

well as the value of some algebraic factorization and simplification by hand.  

 

Acknowledgement: The author wishes to thank the anonymous referee for the valuable 

contributions to improving this paper. 

References 



Published in The Mathematical Gazette, 96(536), July 2012, pp. 309-315. All rights reserved by the 
Mathematical Association, http://www.m-a.org.uk/jsp/index.jsp?lnk=620 

 

1. P. Lockhart, ‘A Mathematician’s Lament’ posted at Keith Devlin’s Angle at 

www.maa.org/devlin/LockhartsLament.pdf (2008). 

2. Parallelogram Law. Wikipedia, accessed 23 July 2011 at 

http://en.wikipedia.org/wiki/Parallelogram_law  

3. M. de Villiers, ‘The role and function of proof with Sketchpad’ in Rethinking 

Proof with Sketchpad, Emeryville: Key Curriculum Press, (2003), pp. 5-10. 

4. M. de Villiers, ‘The role and function of proof in mathematics’, Pythagoras, 24, 

(1990), pp. 17-24.  

5. A.R. Amir-Moez and J.D. Hamilton, ‘A generalized parallelogram law’, 

Mathematics Magazine, 49, (1976), pp. 88-89. 

6. A.J. Douglas, ‘A Generalization of Apollonius' Theorem’, The Mathematical 

Gazette, 65 (431), (1981), pp. 19-22. 

7. J.M. Borwein, ‘Digitally-Assisted Discovery and Proof’, in Lin, F., Hsieh, F., 

Hanna, G. and De Villiers, M. (Eds). Proof and Proving in Mathematics 

Education: ICMI Study 19 Proceedings, (2009), pp. 3-11. 

 

MICHAEL DE VILLIERS  

 School of Science, Mathematics & Technology Education,  

University of KwaZulu-Natal, South Africa 

e-mail: profmd@mweb.co.za 

Homepage: http://dynamicmathematicslearning.com/homepage4.html 

Dynamic Geometry Sketches: 

http://dynamicmathematicslearning.com/JavaGSPLinks.htm   

 

 

 


