
In this activity, you will investigate the kind of quadrilateral formed by 
connecting points E, F, G, and H in the construction shown here. The 
construction contains special quadrilaterals.

CONJECTURE 
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  Open the sketch Para Squares.gsp. Drag 
points in your sketch to familiarize yourself 
with this construction.

  1. Describe the four shaded quadrilaterals.

  2. Describe quadrilateral ABCD.

  Use the Polygon tool to construct 
quadrilateral EFGH.

  3. Drag any of the points A, B, C, and D. 
What kind of quadrilateral is EFGH ? Measure some angles and sides to 
check your conjecture. 

  4. Drag A so that  AWDW is parallel to  AWBW. Does your conjecture from 
Question 3 still hold?

  5. Drag A across CD so that the shaded quadrilaterals overlap. Does your 
conjecture from Question 3 still hold?

 CHALLENGE Provide a proof of your conjecture from Question 3.
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(continued )

Investigating Further

You have observed that quadrilateral EFGH is always a square, but you  
may not yet be able to explain why this is true. This section will help you 
investigate the problem further to come up with some ideas for a proof.

  Press the Half-turn button.

  6. What do you notice about the original construction? Describe its 
symmetry. Since a quadrilateral EFGH has the same symmetry, what 
can you already conclude about it?

  Press the button that shows triangles HAE and HDG. 
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  7. What do you notice about these two triangles? 

Drag points and take measurements to explore 
experimentally. Then try to explain your 
observations logically. 

  Double-click on point H to mark it as a center of 
rotation. Then rotate the interior of DHDG so that it lies inside DHAE. 

  8. How many degrees did you rotate around H to map DHDG  
onto DHAE ? 

  9. What can you now conclude regarding –EHG, and consequently  
about EFGH ?

 CHALLENGE Try to use your observations from Questions 6–9 to construct a proof 
that quadrilateral EFGH is a square. Discuss your thoughts with a partner. 
If you get stuck, read the hints that follow. 
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Carefully select the 
interior and choose 
Rotate from the 
Transform menu.  
Type the number of 
degrees you wish to 
rotate and click OK.



Name(s): Parallelogram Squares
(continued )

PROVING

The development of a logical argument to  
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defend a mathematical result is often perceived 
as an intellectual challenge by mathematicians. 
This is your chance to rise to that challenge! 

Follow the steps below to construct a proof of 
your original conjecture.

  10. Explain the relationship between –HAE  
and –BAD. (Hint: Drag point B until  AWBW is 
parallel to  AWDW.)

  11. Explain the relationship between –BAD and –ADC.

  12. Describe –HDG in terms of –BAD. (Hint: Look at the angles 
surrounding point D.)

  13. What can you conclude from Questions 11 and 12? 

  14. What can you say about the corresponding sides EA and GD of  
triangles HAE and HDG? Why?

  15. What can you say about the corresponding sides AH and DH ? Why?

  16. From Questions 13–15, what can you conclude about triangles HAE 
and HDG, and therefore about the corresponding sides HE and HG ?

  17. What can you conclude about quadrilateral EFGH at this point?

  18. What can you say about –AHD? Why?
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(continued )

  19. What can you therefore say about –EHG? Why?

  20. What can you conclude about quadrilateral EFGH now? Why?

Present Your Proof

Look over Questions 6 and 10–20. Now write a proof of your original 
conjecture in your own words. You may include a demonstration sketch to 
support and explain your proof.

Further Exploration

  1. In Question 5, you saw that if the squares lie inwardly and overlap 
(rather than lying outwardly), the result still holds. Can you adapt  
your proof for this configuration?

  2. What type of quadrilateral is formed by the centers of squares 
constructed on the sides of an isosceles trapezoid? Can you explain  
your observation?

  3. What type of quadrilateral is formed by the centers of the squares 
constructed on the sides of a kite?
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PARALLELOGRAM SQUARES (PAGE 104)

This activity reinforces the idea that constructing a logical
explanation (proof ) can be perceived as an intellectual
challenge after a result is found to be true experimentally.
This activity can also be done later if you feel that it may 
be too challenging for students at this stage.

Prerequisites: Side-angle-side condition for congruent
triangles; symmetry properties of parallelograms,
rhombuses, and squares, as well as their hierarchical
relationships.

Sketch: Para Squares.gsp. Additional sketches are 
Aubel 1.gsp and Aubel 2.gsp.

CONJECTURE 
1. They are squares.

2. It is a parallelogram.

3. EFGH is a square.

4. Yes, it remains a square.

5. Yes, it remains a square. Note that the squares now lie
on the “inward” sides of the parallelogram.

INVESTIGATING FURTHER
6. The whole configuration maps onto itself under 

a half-turn, and therefore EFGH must also be 
a parallelogram. (A parallelogram is the only
quadrilateral with half-turn symmetry.)

7. Triangles HAE and HDG are congruent.

8. 90°.

9. m∠EHG ! 90°, since GHJJ is rotated onto EHJJ.

PROVING 
10. m∠HAE ! 90° " m∠BAD, since m∠HAD and

m∠EAB both equal 45°.

11. m∠BAD " m∠ADC ! 180°, since they are co-
interior angles between the two parallels ABJJ and DCJJ.

12. m∠HDG ! 360° # (45° " 45° " m∠ADC)

! 360° # (90° " 180° " m∠BAD)

! 90° " m∠BAD.

In a case in which ABCD is concave or crossed, EFGH
becomes a crossed quadrilateral, so the proofs need to be
adapted using directed angles and require knowledge of
the properties of crossed quadrilaterals (for a proof, see 
de Villiers 1996, 191–192).
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3. The centers of the squares on the sides of a kite form
an isosceles trapezoid. This also follows directly from
symmetry, as in the preceding argument.

Generalizing
You may wish to encourage students to investigate/explain
what would happen if they constructed squares on the
sides of any quadrilateral. In general, the diagonals of
EFGH are equal and perpendicular (EGJJ ! HFJJ) in any
quadrilateral (see Yaglom 1962 , 39 or Kelly 1966).

The latter result, known as van Aubel’s theorem, can be
further generalized for similar rectangles and rhombuses
on the sides as shown below (different proofs are given in 
de Villiers 1997 and 1998a). In the first figure, EGJJ is always
perpendicular to FHJJ. Also, KMJJ is congruent to LNJJ where
K, L, M, and N are the midpoints of the line segments
joining adjacent vertices of the similar rectangles as shown.
A dynamic sketch is provided in Aubel 1.gsp.
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m∠FOG = 90.00$

KM = 14.76 cm
NL = 14.76 cm

13. Therefore, m∠HAE ! m∠HDG.

14. EA ! GD, since squares E and G are congruent (on
opposite sides of parallelogram).

15. AH ! DH (property of a square).

16. Triangles HAE and HDG are congruent (SAS), and
therefore HE ! HG.

17. Therefore, EFGH is a rhombus (a parallelogram with
two equal adjacent sides is a rhombus).

18. m∠AHD ! 90° (diagonals of a square are
perpendicular to each other).

19. Therefore, a rotation of 90° maps DHJJ onto AHJJ, and
thus triangle HDG onto EAH. Thus, m∠EHG must
also be 90°. (Or, alternatively, m∠AHD ! 90° !

m∠AHE " m∠EHD. But from congruency,
m∠AHE ! m∠DHG, and therefore m∠DHG "

m∠EHD ! ∠EHG.)

20. Therefore, EFGH is a square (a rhombus with a right
angle is a square).

In the above explanation (proof ), a number of properties
are used that students may have encountered previously,
but not yet logically explained (proved). This should not
present a problem if they later revisit these properties and
logically establish them.

Although the above proof uses an elegant argument, some
students may find it easier to simply repeat the same
argument about corresponding pairs of congruent triangles
at vertices B, C, and D. This implies that all four sides are
equal (a rhombus), but since the one right angle is already
proved, it follows that the quadrilateral must be a square.

Further Exploration
1. The result still holds if the squares are constructed

inwardly, and exactly the same argument applies,
except that both m∠HAE and m∠HDG are then 
equal to m∠D ! 90°.

2. The centers of the squares on the sides of an isosceles
trapezoid form a kite. This follows directly from
symmetry; that is, the axis of symmetry of the isosceles
trapezoid is also the axis of symmetry of the formed
quadrilateral that passes through one pair of opposite
vertices (which implies that it is a kite).
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THE FERMAT-TORRICELLI POINT (PAGE 108)

This activity reinforces the function of proof discussed
earlier, namely, logical discovery. After proving the results
for a right triangle, students focus their attention on
whether the arguments are still valid if angle ABC is not 
a right angle. This should make them realize that the
result is immediately generalizable to any triangle. You 
can emphasize that this often happens in mathematical
research, namely, that in proving some result, we find on
reflection that some conditions were never used in the
proof (i.e., were unnecessary) and that the result can
therefore be generalized. The reason for starting with 
the right triangle is therefore to specifically illustrate 
this discovery function of proof.

Prerequisites: Knowledge of the properties of convex cyclic
quadrilaterals (quadrilaterals that can be inscribed in a
circle). Specifically, students should know that a convex
quadrilateral is cyclic if and only if a pair of its opposite
angles are supplementary. These properties have been
discovered and proved in two earlier activities: Cyclic
Quadrilateral and Cyclic Quadrilateral Converse. Also,
students should be familiar with the SAS method of
proving a pair of triangles congruent.

Sketch: Fermat 1.gsp. Additional sketches are Fermat
2.gsp, Fermat 3.gsp, and Fermat 4.gsp.

CONJECTURE
1. The “outer” triangles are all equilateral. If students 

are uncertain, encourage them to measure the sides 
or angles.

2. The lines DC, EA, and FB are concurrent.

3. The line segments DC, EA, and FB are equal in length.

4. The triangles lie inward.

5. Both results are still true.

CHALLENGE This gives students a first try at writing a proof
for their conjectures.

VERIFYING
6. Triangle DBC maps onto triangle ABE (and they are

therefore congruent).

In the second figure, EGJJ is always congruent to FHJJ. Also,
KMJJ is perpendicular to LNJJ, where K, L, M, and N are the
midpoints of the line segments joining adjacent vertices 
of the similar rhombuses as shown. A dynamic sketch is
provided in Aubel 2.gsp. The “intersection” of these two
results therefore yields van Aubel’s theorem.

Two interesting special cases are obtained by constructing
these similar rectangles and rhombuses on the sides of a
parallelogram. In the first case, a rhombus is obtained,
and in the second case, a rectangle. Proofs of these two
special cases can be found in de Villiers (1996, 101–102).

All these results also nicely display the angle-side duality
mentioned in the Teacher Notes for the Isosceles Trapezoid
Midpoints activity, as well as in the Teacher Notes for the
Logical Discovery: Circum Quad activity.

These two generalizations involving similar rectangles 
and rhombuses on the sides of any quadrilateral have 
since been generalized further to parallelograms,
and to points other than the “centers” (see de Villiers
2000). A downloadable copy of this paper, as well as
Sketchpad 3 sketches illustrating these generalizations,
can be found on the author’s Web site at
http://mzone.mweb.co.za/residents/profmd.

B

A

D

C

X
E

G

K

M

F

HJ

L

O

FH = 8.402 cm
EG = 8.402 cm
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