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The Perpendicular Bisector Construction, the Isoptic
point, and the Simson Line of a Quadrilateral

Olga Radko and Emmanuel Tsukerman

Abstract. Given a noncyclic quadrilateral, we consider an iterative procedure
producing a new quadrilateral at each step. At each iteration, the vertices of the
new quadrilateral are the circumcenters of the triad circles of the previous gener-
ation quadrilateral. The main goal of the paper is to prove a number of interesting
properties of the limit point of this iterative process. We show that the limit point
is the common center of spiral similarities taking any of the triad circles into
another triad circle. As a consequence, the point has the isoptic property i.e.,
all triad circles are visible from the limit point at the same angle. Furthermore,
the limit point can be viewed as a generalization of a circumcenter. It also has
properties similar to those of the isodynamic point of a triangle. We also char-
acterize the limit point as the unique point for which the pedal quadrilateral is a
parallelogram. Continuing to study the pedal properties with respect to a quadri-
lateral, we show that for every quadrilateral there is a unique point (which we
call the Simson point) such that its pedal consists of four points on a line, which
we call the Simson line, in analogy to the case of a triangle. Finally, we define
a version of isogonal conjugation for a quadrilateral and prove that the isogonal
conjugate of the limit point is a parallelogram, while that of the Simson point is
a degenerate quadrilateral whose vertices coincide at infinity.

1. Introduction

The perpendicular bisector construction that we investigate in this paper arises
very naturally in an attempt to find a replacement for a circumcenter in the case of a
noncyclic quadrilateral Q(1) = A1B1C1D1. Indeed, while there is no circle going
through all four vertices, for every triple of vertices there is a unique circle (called
the triad circle) passing through them. The centers of these four triad circles can
be taken as the vertices of a new quadrilateral, and the process can be iterated to
obtain a sequence of noncyclic quadrilaterals: Q(1), Q(2), Q(3), . . . .
To reverse the iterative process, one finds the isogonal conjugates of each of

the vertices with respect to the triangle formed by the remaining vertices of the
quadrilateral.
It turns out that all odd generation quadrilaterals are similar, and all even gener-

ation quadrilaterals are similar. Moreover, there is a point that serves as the center
of spiral similarity for any pair of odd generation quadrilaterals as well as for any
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pair of even generation quadrilaterals. The angle of rotation is 0 or π depending
on whether the quadrilateral is concave or convex, and the ratio r of similarity is a
constant that is negative for convex noncyclic quadrilaterals, zero for cyclic quadri-
laterals, and≥ 1 for concave quadrilaterals. If |r| "= 1, the same special point turns
out to be the limit point for the iterative process or for the reverse process.
The main goal of this paper is to prove the following theorem.

Theorem 1. For each quadrilateral Q(1) = A1B1C1D1 there is a unique point W
that has any (and, therefore, all) of the following properties:

(1) W is the center of the spiral similarity for any two odd (even) generation
quadrilaterals in the iterative process;

(2) Depending on the value of the ratio of similarity in the iterative process,
there are the following possibilities:
(a) If |r| < 1, the quadrilaterals in the iterated perpendicular bisectors

construction converge to W ;
(b) If |r| = 1, the iterative process is periodic (with period 2 or 4); W

is the common center of rotations for any two odd (even) generation
quadrilaterals;

(c) If |r| > 1, the quadrilaterals in the reverse iterative process (obtained
by isogonal conjugation) converge to W ;

(3) W is the common point of the six circles of similitude CS(oi, oj) for any
pair of triad circles oi, oj , i, j ∈ {1, 2, 3, 4}, where o1 = (D1A1B1),
o2 = (A1B1C1), o3 = (B1C1D1), o4 = (C1D1A1).

(4) (isoptic property) Each of the triad circles is visible from W at the same
angle.

(5) (generalization of circumcenter) The (directed) angle subtended by any of
the quadrilateral’s sides at W equals to the sum of the angles subtended
by the same side at the two remaining vertices.

(6) (isodynamic property) The distance from W to any vertex is inversely pro-
portional to the radius of the triad circle determined by the remaining three
vertices.

(7) W is obtained by inversion of any of the vertices of the original quadrilat-
eral in the corresponding triad-circle of the second generation:

W = Inv
o
(2)

1

(A) = Inv
o
(2)

2

(B) = Inv
o
(2)

3

(C) = Inv
o
(2)

4

(D),

where o
(2)

1
= (D2A2B2), o

(2)

2
= (A2B2C2), o

(2)

3
= (B2C2D2), o

(2)

4
=

(C2D2A2).
(8) W is obtained by composition of isogonal conjugation of a vertex in the

triangle formed by the remaining vertices and inversion in the circumcircle
of that triangle.

(9) W is the center of spiral similarity for any pair of triad circles (of possibly
different generations). That is, W ∈ CS(o(k)

i , o
(l)
j ) for all i, j, k, l.

(10) The pedal quadrilateral of W is a (nondegenerate) parallelogram. More-
over, its angles equal to the angles of the Varignon parallelogram.
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Many of these properties ofW were known earlier. In particular, several authors
(G. T. Bennett in an unpublished work, De Majo [11], H. V. Mallison [12]) have
considered a point that is defined as the common center of spiral similarities. Once
the existence of such a point is established, it is easy to conclude that all the triad
circles are viewed from this point under the same angle (this is the so-called isoptic
property). Since it seems that the oldest reference to the point with such an isoptic
property is to an unpublished work of G. T. Bennett given by H. F. Baker in his
Principles of Geometry, volume 4 [1, p.17], in 1925, we propose to call the center
of spiral similarities in the iterative process Bennett’s isoptic point.
C. F. Parry and M. S. Longuet-Higgins [14] showed the existence of a point with

property 7 using elementary geometry.
Mallison [12] definedW using property 3 and credited T. McHugh for observing

that this implies property 5.
Several authors, including Wood [19] and De Majo [11], have looked at the

properties of the isoptic point from the point of view of the unique rectangular
hyperbola going through the vertices of the quadrilateral, and studied its properties
related to cubics. For example, P.W. Wood [19] considered the diameters of the
rectangular hyperbola that go through A,B,C,D. Denoting by Ā, B̄,C̄, D̄ the
other endpoints of the diameters, he showed that the isogonal conjugates of these
points in triangles BCD, CAD,ABD, ABC coincide. Starting from this, he
proved properties 4 and 7 of the theorem. He also mentions the reversal of the
iterative process using isogonal conjugation (also found in [19], [17], [5]). Another
interesting property mentioned by Wood is thatW is the Fregier point of the center
of the rectangular hyperbola for the conic ABCDO, where O is the center of the
rectangular hyperbola.
De Majo [11] uses the property that inversion in a point on the circle of simili-

tude of two circles transforms the original circles into a pair of circles whose radii
are inversely proportional to those of the original circles to show that that there
is a common point of intersection of all 6 circles of similitude. He describes the
iterative process and states property 1, as well as several other properties of W
(including 8). Most statements are given without proofs.
Scimemi [17] describes a Möbius transformation that characterizes W : there

exists a line going through W and a circle centered at W such that the product of
the reflection in the line with the inversion in the circle maps each vertex of the first
generation into a vertex of the second generation.
The question of proving that the third generation quadrilateral is similar to the

original quadrilateral and finding the ratio of similarity was first formulated by J.
Langr [8]. Independently, the result appeared in the form of a problem by V.V.
Prasolov in [15, 16]. The expression for the ratio (under certain conditions) was
obtained by J. Langr [8] , and the expression for the ratio (under certain conditions)
was obtained by D. Bennett [2] (apparently, no relation to G. T. Bennett mentioned
above), and J. King [7]. A paper by G. C. Shepard [18] found an expression for the
ratio as well. (See [3] for a discussion of these works).
Properties 9 and 10 appear to be new.
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For the convenience of the reader, we give a complete and self contained exposi-
tion of all the properties in the Theorem above, as well as proofs of several related
statements.
In addition to investigating properties ofW , we show that there is a unique point

for which the feet of the perpendiculars to the sides lie on a straight line. In analogy
with the case of a triangle, we call this line the Simson line of a quadrilateral and
the point – the Simson point. The existence of such a point is stated in [6] where it
is obtained as the intersection of the Miquel circles of the complete quadrilateral.
Finally, we introduce a version of isogonal conjugation for a quadrilateral and

show that the isogonal conjugate of W is a parallelogram, and that of the Simson
point is a degenerate quadrilateral whose vertices are at infinity, in analogy with
the case of the points on the circumcircle of a triangle.

2. The iterative process

Let A1B1C1D1 be a quadrilateral. If A1B1C1D1 is cyclic, the center of the
circumcircle can be found as the intersection of the four perpendicular bisectors to
the sides of the quadrilateral.
Assume that Q(1) = A1B1C1D1 is a noncyclic quadrilateral.1 Is there a point

that, in some sense, plays the role of the circumcenter? Let Q(2) = A2B2C2D2 be
the quadrilateral formed by the intersections of the perpendicular bisectors of the
sides of A1B1C1D1. The vertices A2, B2, C2,D2 of the new quadrilateral are the
circumcenters of the triangles D1A1B1 , A1B1C1, B1C1D1 and C1D1A1 formed
by vertices of the original quadrilateral taken three at a time.

A D

C

B

A2

D2

C2

B2

A D

C

B

A2

D2

C2

B2

A3

B3
C3

D3

Figure 1. The perpendicular bisector construction and Q
(1)

, Q
(2)

, Q
(3).

Iterating this process, i.e., constructing the vertices of the next generation quadri-
lateral by intersecting the perpendicular bisectors to the sides of the current one,
we obtain the successive generations, Q(3) = A3B3C3D3, Q(4) = A4B4C4D4

and so on, see Figure 1.

1Sometimes we drop the lower index 1 when denoting vertices of Q
(1), so ABCD and

A1B1C1D1 are used interchangeably throughout the paper.



The perpendicular bisector construction, isotopic point and Simson line 165

The first thing we note about the iterative process is that it can be reversed using
isogonal conjugation. Recall that given a triangle ABC and a point P , the isogonal
conjugate of P with respect to the triangle (denoted by IsoABC(P )) is the point
of intersection of the reflections of the lines AP , BP and CP in the bisectors of
anglesA,B andC respectively. One of the basic properties of isogonal conjugation
is that the isogonal conjugate of P is the circumcenter of the triangle obtained by
reflecting P in the sides of ABC (see, for example, [5] for more details). This
property immediately implies

Theorem 2. The original quadrilateral A1B1C1D1 can be reconstructed from the
second generation quadrilateral A2B2C2D2 using isogonal conjugation:

A1 = IsoD2A2B2
(C2),

B1 = IsoA2B2C2
(D2),

C1 = IsoB2C2D2
(A2),

D1 = IsoC2D2A2
(B2).

The following theorem describes the basic properties of the iterative process.

Theorem 3. Let Q(1) be a quadrilateral. Then
(1) Q(2) degenerates to a point if and only if Q(1) is cyclic.
(2) If Q(1) is not cyclic, the corresponding angles of the first and second gen-

eration quadrilaterals are supplementary:
∠A1 + ∠A2 = ∠B1 + ∠B2 = ∠C1 + ∠C2 = ∠D1 + ∠D2 = π.

(3) If Q(1) is not cyclic, all odd generation quadrilaterals are similar to each
other and all the even generation quadrilaterals are similar to each other:

Q(1) ∼ Q(3) ∼ Q(5) ∼ . . . ,

Q(2) ∼ Q(4) ∼ Q(6) ∼ . . . .

(4) All odd generation quadrilaterals are related to each other via spiral sim-
ilarities with respect to a common center.

(5) All even generation quadrilaterals are also related to each other via spiral
similarities with respect to a common center.

(6) The angle of rotation for each spiral similarity is π (for a convex quadri-
lateral) or a 0 (for a concave quadrilateral). The ratio of similarity is

r =
1

4
(cotα+ cot γ) · (cot β + cot δ), (1)

where α = ∠A1, β = ∠B1, γ = ∠C1 and δ = ∠D1 are the angles of
Q(1).

(7) The center of spiral similarities is the same for both the odd and the even
generations.

Proof. The first and second statements follow immediately from the definition of
the iterative process. To show that all odd generation quadrilaterals are similar
to each other and all even generation quadrilaterals are similar to each other, it is
enough to notice that both the corresponding sides and the corresponding diagonals
of all odd (even) generation quadrilaterals are pairwise parallel.
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LetW1 := A1A3∩B1B3 be the center of spiral similarity takingQ(1) intoQ(3).
Similarly, letW2 be the center of spiral similarity takingQ(2) intoQ(4). Denote the
midpoints of segments A1B1 and A3B3 byM1 andM3. (See fig. 2). To show that
W1 and W2 coincide, notice that B1M1A2 ∼ B3M3A4. Since the corresponding
sides of these triangles are parallel, they are related by a spiral similarity. Since
B1B3 ∩M1M3 = W1 and M1M3 ∩ B2B4 = W2, it follows that W1 = W2. Let
now W3 be the center of spiral similarity that takes Q(3) into Q(5). By the same
reasoning, W2 = W3, which implies thatW1 = W3. Continuing by induction, we
conclude that the center of spiral similarity for any pair of odd generation quadrilat-
erals coincides with that for any pair of even generation quadrilaterals. We denote
this point byW . "
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B1

C1D1

A2

B2

C2

D2

A3B3

C3 D3

W

A1

B1

C1D1

A2

B2

C2

D2

A3B3

C3 D3

W

A4

B4

C4

D4

W

M1

M3

Figure 2. W as the center of spiral similarities.

From parts (2) and (3) of Theorem 3 we obtain the following corollary.

Corollary 4. The even and odd generation quadrilaterals are similar to each other
if and only if Q(1) is a trapezoid.

The ratio of similarity r = r(α,β, γ, δ) takes values in (−∞, 0] ∪ [1,∞) and
characterizes the shape of Q(1) in the following way:

(1) r ≤ 0 if and only if Q(1) is convex. Moreover, r = 0 if and only if Q(1) is
cyclic.

(2) r ≥ 1 if and only if Q(1) is concave. Moreover, r = 1 if and only if Q(1)

is orthocentric (that is, each of the vertices is the orthocenter of the trian-
gle formed by the remaining three vertices. Alternatively, an orthocentric
quadrilateral is characterized by being a concave quadrilateral for which
the two opposite acute angles are equal).

For convex quadrilaterals, r can be viewed as a measure of how noncyclic the orig-
inal quadrilateral is. Recall that since the opposite angles of a cyclic quadrilateral
add up to π, the difference

|(α+ γ)− π| = |(β + δ)− π| (2)
can be taken as the simplest measure of noncyclicity. This measure, however, treats
two quadrilaterals with equal sums of opposite angles as equally noncyclic. The
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ratio r provides a refined measure of noncyclicity. For example, for a fixed sum of
opposite angles, α + γ = C , β + δ = 2π − C , where C ∈ (0, 2π), the convex
quadrilateral with the smallest |r| is the parallelogram with α = γ = C

2
, β = δ.

Similarly, for concave quadrilaterals, r measures how different the quadrilateral
is from being orthocentric.
Since the angles between diagonals are the same for all generations, it follows

that the ratio is the same for all pairs of consecutive generations:

Area(Q(n))

Area(Q(n−1))
= |r|.

Assuming the quadrilateral is noncyclic, there are the following three possibilities:
(1) When |r| < 1 (which can only happen for convex quadrilaterals), the

quadrilaterals in the iterative process converge toW .
(2) When |r| > 1, the quadrilaterals in the inverse iterative process converge

toW .
(3) When |r| = 1, all the quadrilaterals have the same area. The iterative

process is periodic with period 4 for all quadrilaterals with |r| = 1, except
for the following two special cases. If Q(1) is either a parallelogram with
angle π

4
(so that r = −1) or forms an orthocentric system (so that r = 1),

we have Q(3) = Q(1), Q(4) = Q(2), and the iterative process is periodic
with period 2.

By setting r = 0 in formula (1), we obtain the familiar relations between the
sides and diagonals of a cyclic quadrilateral ABCD:

AC · BD = AB · CD + BC · AD, (Ptolemy’s theorem) (3)
AC

BD
=

AB · AD + CB · CD

BA · BC + DA · DC.
(4)

Since the vertices of the next generation depend only on the vertices of the pre-
vious one (but not on the way the vertices are connected), one can see that W and
r for the (self-intersecting) quadrilaterals ACBD and ACDB coincide with those
for ABCD. This observation allows us to prove the following

Corollary 5. The angles between the sides and the diagonals of a quadrilateral
satisfy the following identities:

(cotα+ cot γ) · (cot β + cot δ) = (cotα1 − cot β2) · (cot δ2 − cot γ1),

(cotα+ cot γ) · (cot β + cot δ) = (cot δ1 − cotα2) · (cot β1 − cot γ2)

where αi,βi, γi, δi, i = 1, 2 are the directed angles formed between sides and
diagonals of a quadrilateral (see Figure 3).

Proof. Since the (directed) angles ofACBD are−α1,β2, γ1,−δ2 and the directed
angles of ACDB are α2,β1,−γ2,−δ1, the identities follow from formula (1) for
the ratio of similarity. "
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Figure 3. The angles between the sides and diagonals of a quadrilateral.

3. Properties of the center of spiral similarity

We will show that W , defined as the limit point of the iterated perpendicular
bisectors construction in the case that |r| < 1 (or of its reverse in the case that
|r| > 1), is the common center of all spiral similarities taking any of the triad
circles into another triad circle in the iterative process.
First, we will prove that any of the triad circles of the first generation quadrilat-

eral can be taken into another triad circle of the first generation by a spiral similarity
centered atW (Theorem 9). This result allows us to viewW as a generalization of
the circumcenter for a noncyclic quadrilateral (Corollary 10 and Corollary 13), to
prove its isoptic (Theorem 11), isodynamic (Corollary 14) and inversive (Theorem
15) properties, as well as to establish some other results. We then prove several
statements that allow us to conclude (see Theorem 24) that W serves as the center
of spiral similarities for any pair of triad circles of any two generations.
Several objects associated to a configuration of two circles on the plane will

play a major role in establishing properties of W . We will start by recalling the
definitions and basic constructions related to these objects.

3.1. Preliminaries: circle of similitude, mid-circles and the radical axis of two cir-
cles. Let o1 and o2 be two (intersecting2) circles on the plane with centers O1 and
O2 and radii R1 and R2 respectively. Let A and B be the points of intersection of
the two circles. There are several geometric objects associated to this configuration
(see Figure 4):

(1) The circle of similitude CS(o1, o2) is the set of points P on the plane such
that the ratio of their distances to the centers of the circles is equal to the
ratio of the radii of the circles:

PO1

PO2

=
R1

R2

.

In other words, CS(o1, o2) is the Apollonian circle determined by points
O1, O2 and ratio R1/R2.

2Most of the constructions remain valid for non-intersecting circles. However, they sometimes
have to be formulated in different terms. Since we will only deal with intersecting circles, we will
restrict our attention to this case.
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(2) The radical axis RA(o1, o2) can be defined as the line through the points
of intersection.

(3) The two mid-circles (sometimes also called the circles of antisimilitude)
MC1(o1, o2) and MC2(o1, o2) are the circles that invert o1 into o2, and
vice versa:

InvMCi(o1,o2)
(o1) = o2, i = 1, 2.

O1 O2

B

A

MC1

CS MC2

RA

Figure 4. Circle of similitude, mid-circles and radical axis.

Here are several important properties of these objects (see [6] and [4] for more
details):

(1) CS(o1, o2) is the locus of centers of spiral similarities taking o1 into o2.
For any E ∈ CS(o1, o2), there is a spiral similarity centered at E that
takes o1 into o2. The ratio of similarity is R2/R1 and the angle of rotation
is ∠O1EO2.

(2) Inversion with respect to CS(o1, o2) takes centers of o1 and o2 into each
other:

InvCS(o1,o2)(O1) = O2.

(3) Inversion with respect to any of the mid-circles exchanges the circle of
similitude and the radical axis:

InvMCi(o1,o2)
(CS(o1, o2)) = RA(o1, o2), i = 1, 2.

(4) The radical axis is the locus of centers of all circles k that are orthogonal
to both o1 and o2.

(5) For any P ∈ CS(o1, o2), inversion in a circle centered at P takes the circle
of similitude of the original circles into the radical axis of the images, and
the radical axis of the original circles into the circle of similitude of the
images:

CS(o1, o2)
′ = RA(o′1, o

′

2),

RA(o1, o2)
′ = CS(o′1, o

′

2).

Here ′ denotes the image of an object under the inversion in a circle cen-
tered at P ∈ CS(o1, o2).
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(6) LetK,L,M be points on the circles o1, o2, CS(o1, o2) respectively. Then
∠AMB = ∠AKB + ∠ALB, (5)

where the angles are taken in the sense of directed angles.
(7) LetA1B1 be a chord of a circle k1 andA2B2 be a chord of a circle k2. Then

A1, B1, A2, B2 are on a circle o if and only ifA1B1∩A2B2 ∈ RA(k1, k2).

It is also useful to recall the construction of the center of a spiral similarity given
the images of two points. Suppose that A and B are transformed into A′ and
B′ respectively. Let P = AA′ ∩ BB′. The center O of the spiral similarity
can be found as the intersection O = (ABP ) ∩ (A′B′P ). (Here and henceforth
(ABP ) stands for the circle going through A,B,P ). We will call point P in this
construction the joint point associated to two given points A,B and their images
A′, B′ under spiral similarity.
There is another spiral similarity associated to the same configuration of points.

Let P ′ = AB∩A′B′ be the joint point for the spiral similarity taking A andA′ into
B and B′ respectively. A simple geometric argument shows that the center of this
spiral similarity, determined as the intersection of the circles (AA′P ′)∩ (BB′P ′),
coincides withO. We will call such a pair of spiral similarities centered at the same
point associated spiral similarities.
Let HW

i,j be the spiral similarity centered at W that takes oi into oj . The fol-
lowing Lemma will be useful when studying properties of the limit point of the
iterative process (or of its inverse):

Lemma 6. Let o1 and o2 be two circles centered at O1 and O2 respectively and
intersecting at points A and B. Let W,R,S ∈ CS(o1, o2) be points on the circle
of similitude such that R and S are symmetric to each other with respect to the
line of centers, O1O2. Then the joint points corresponding to taking O1 → O2,
R → R1,2 := HW

1,2(R) by HW
1,2 and taking O2 → O1, S → S2,1 := HW

2,1(S) by
HW

2,1 coincide. The common joint point lies on O1O2.

O2 O1

R

S
W

R1,2

S2,1

P

CS

Figure 5. Lemma 6.
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Proof. Perform inversion in the mid-circle. The image of CS(o1, o2) is the radical
axis RA(o1, o2), i.e., the line through A and B. The images of R and S lie on
the line AB and are symmetric with respect to I := AB ∩ O1O2. Similarly, the
images of O1 and O2 are symmetric with respect to I and lie on the line of centers.
By abuse of notation, we will denote the image of a point under inversion in the
mid-circle by the same letter.
The lemma is equivalent to the statement that P := (WO1R)∩O1O2 lies on the

circle (WO2S). To show this, note that since P,R,O1 and W lie on a circle, we
have |IP | · |IO1| = |IW | · |IR|. Since |IO2| = |IO1| and |IR| = |IS|, it follows
that |IP | · |IO2| = |IW | · |IS|, which implies that W,P,O2, S lie on a circle.
After inverting back in the mid-circle, we obtain the result of the lemma. "

Notice that the lemma is equivalent to the statement that

RR1,2 ∩ SS2,1 = (WRO1) ∩ (WSO2) ∈ O1O2.

3.2. W as the center of spiral similarities for triad circles of Q(1). Denote by
o1, o2, o3 and o4 the triad circles (D1A1B1), (A1B1C1), (B1C1D1) and (C1D1A1)
respectively.3 For triad circles in other generations, we add an upper index indi-
cating the generation. For example, o

(3)

1
denotes the first triad-circle in the 3rd

generation quadrilateral, i.e., circle (D3A3B3). Let T1, T2, T3 and T4 be the triad
triangles D1A1B1, A1B1C1, B1C1D1 and C1D1A1 respectively.
Consider two of the triad circles of the first generation, oi and oj , i "= j ∈

{1, 2, 3, 4}. The set of all possible centers of spiral similarity taking oi into oj is
their circle of similitude CS(oi, oj). If Q(1) is a nondegenerate quadrilateral, it
can be shown that CS(o1, o2) and CS(o1, o4) intersect at two points and are not
tangent to each other. Let W be the other point of intersection of CS(o1, o2) and
CS(o1, o4).4
Let HW

k,l be the spiral similarity centered at W that takes ok into ol for any
k, l ∈ {1, 2, 3, 4}.

Lemma 7. Spiral similarities HW
k,l have the following properties:

(1) HW
1,2(B1) = A1⇐⇒HW

2,4(A1) = C1.
(2) HW

1,2(B1) = A1⇐⇒HW
1,4(B1) = C1.

Proof. Assume that HW
1,2(B1) = A1. Let P1,2 := A1B1 ∩A2B2 be the joint point

of the spiral similarity (centered at W ) taking B1 into A1 and A2 into B2. Since
points B1, P1,2,W,A2 lie on a circle (see Lemma 6), it follows that ∠BWA1 =
∠BP1,2A2 = π/2. Thus, A2B1 is a diameter of k1 := (B1P1,2WA2). Since o1

is centered at A2, the circles o1 and k1 are tangent at B1. It is easy to see that the
converse is also true: if o1 and (B1WA2) are tangent at B1, then HW

1,2(B1) = A1.

3In short, the middle vertex defining the circle oi is vertex number i (the first vertex being A1,
the second being B1, the third being C1 and the last being D1).

4This will turn out to be the same point as the limit point of the iterative process defined in section
2, so the clash of notation is intentional.
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Since A1, P1,2,W,B2 lie on a circle, it follows that ∠A1WB2 = ∠A1P1,2B2 =
π/2. Since B1 -→ A1 and A2 -→ B2 under HW

1,2, ∠B1WA2 = ∠A1WB2 = π/2.
This implies that the circles k2 := (A1P1,2WB2) and o2 are tangent at A1. It is
easy to see that k2 is tangent to o2 if and only if k1 is tangent to o1.
Similarly to the above, let P2,4 := A1H

W
2,4(A1)∩B2D2 be the joint point of the

spiral similarity centered at W and taking o2 into o4. Then P2,4 ∈ k2. Similarly
to the argument above, k2 is tangent to o2 if and only if k4 := (C1P2,4WD2) is
tangent to o4. This is equivalent to HW

2,4(A1) = C1.
The second statement follows sinceHW

1,4(B1) = HW
2,4◦H

W
1,2(B1) = HW

2,4(A1) =
C1. (Here and below the compositions of transformations are read right to left).

"

A

B

C
D

A2

B2
C2

D2

W
P2,4

P1,2

k1

k2

k3

A

B

C

D

A2

B2

C2

D2

W

P2,4

P1,2

k1

k2

k3

Figure 6. Proofs of Lemma 7 and Lemma 8.

Notice that circles o1 and o4 have two common vertices, A1 and D1. The next
Lemma shows thatHW

1,4 takes B1 (the third vertex on o1) to C1 (the third vertex on
o4). This property is very important for showing that any triad circle from the first
generation can be transformed into another triad circle from the first generation
by a spiral similarity centered at W . Similar properties hold for HW

1,2 and HW
2,4.

Namely, we have

Lemma 8. HW
1,4(B1) = C1, HW

1,2(D1) = C1, HW
4,2(D1) = B1.

Proof. Lemma 7 shows thatHW
1,2(B1) = A1 impliesHW

1,4(B1) = C1. Assume that
HW

1,2(B1) "= A1. To find the image of B1 under HW
1,4, represent the latter as the

composition HW
2,4 ◦HW

1,2. First, HW
1,2(B1) = P1,2B1 ∩ (P1,2B2W ), where P1,2 is

as in Lemma 7, see Figure 6. For brevity, let B1,2 := HW
1,2(B1). (The indices refer

to the fact that B1,2 is the image of B under spiral similarity taking o1 into o2).
Nowwe constructHW

1,4(B1) = HW
2,4(B1,2). By Lemma 6,HW

1,4(B1) = P2,4B1,2∩
(WP2,4D2), where P2,4 is as in Lemma 7. Applying Lemma 6 to the circle
(WP2,4D2), we conclude that it passes through C1. Since by assumptionHW

1,2(B1) "=
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A1, it follows that HW
2,4 ◦HW

1,2(B1) = C1. Thus, HW
1,4(B1) = C1. The other state-

ments in the Lemma can be shown in a similar way. "

The last Lemma allows us to show thatW lies on all of the circles of similitude
CS(oi, oj).

Theorem 9. W ∈ CS(oi, oj) for all i, j ∈ {1, 2, 3, 4}.

Proof. By definition, W ∈ CS(o1, o2) ∩ CS(o1, o4) ∩ CS(o2, o4). We will show
thatW ∈ CS(o3, oi) for any i ∈ {1, 2, 4}.
Recall that B1 ∈ CS(o1, o2) ∩ CS(o2, o3). Let ˜W be the second point in the

intersection CS(o1, o2)∩CS(o2, o3), so thatCS(o1, o2)∩CS(o2, o3) = {B1,˜W}.
By Lemma 8,H˜W

1,2(D1) = C1. SinceH
˜W
1,2(A2) = B2, it follows thatH

˜W
1,2 = HW

1,2,
which implies that ˜W = W . Therefore, W is the common point for all the circles
of similitude CS(oi, oj), i, j ∈ {1, 2, 3, 4}. "

3.3. Properties of W. The angle property (5) of the circle of similitude implies

Corollary 10. The angles subtended by the quadrilateral’s sides at W are as fol-
lows (see Figure 7):

∠AWB = ∠ACB + ∠ADB,

∠BWC = ∠BAC + ∠BDC,

∠CWD = ∠CAD + ∠CBD,

∠DWA = ∠DBA + ∠DCA.

A

B

C

D

W

β2

α1

Figure 7. ∠CWD = ∠CAD + ∠CBD.

This allows us to viewW as a replacement of the circumcenter in a certain sense:
the angle relations above are generalizations of the relation ∠AOB = ∠ACB +
∠ADB between the angles in a cyclic quadrilateral ABCD with circumcenter O.
(Of course, in this special case, ∠ACB = ∠ADB).
Since W ∈ CS(oi, oj) for all i, j, W can be used as the center of spiral sim-

ilarity taking any of the triad circles into another triad circle. This implies the
following
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Theorem 11. (Isoptic property) All the triad circles oi subtend equal angles at W.

In particular, W is inside of all of the triad circles in the case of a convex quadri-
lateral and outside of all of the triad circles in the case of a concave quadrilateral.
(This was pointed out by Scimemi in [17]). If W is inside of a triad circle, the
isoptic angle equals to ∠TOT ′, where T and T ′ are the points on the circle so
that TT ′ goes through W and TT ′ ⊥ OW . (See Figure 8, where ∠T1A2W and
∠T4B2W are halves of the isoptic angle in o1 and o4 respectively). IfW is outside
of a triad circle centered at O andWT is the tangent line to the circle, so that T is
point of tangency, ∠OTW is half of the isoptic angle. Inverting in a triad circle of
the second generation, we get that the triad circles are viewed at equal angles from
the vertices opposite to their centers (see Figure 8).

B

A

C
D

B2

D2

W

T2

T4

A

B

C

D

B2

C2

D2

A2

W

Figure 8. The isoptic angles before and after inversion.

Recall that the power of a point P with respect to a circle o centered at O with
radius R is the square of the length of the tangent from P to the circle, that is,

h = |PO|2 −R2.

The isoptic property implies the following

Corollary 12. The powers of W with respect to triad circles are proportional to
the squares of the radii of the triad circles.

This property of the isoptic point was shown by Neville in [13] using tetracyclic
coordinates and the Darboux-Frobenius identity.
Let a, b, c, d be sides of the quadrilateral. For any x ∈ {a, b, c, d}, let Fx be

the foot of the perpendicular bisector of side x on the opposite side. (E.g., Fa is
the intersection of the perpendicular bisector to the side AB and the side CD).
The following corollary follows from Lemma 8 and expresses W as the point of
intersection of several circles going through the vertices of the first and second
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generation quadrilaterals, as well as the intersections of the perpendicular bisectors
of the original quadrilateral with the opposite sides (see Figure 9).

A B

C

D

Fb

Fc

Fd

A2

B2 C2

D2

W

Figure 9. W as the intersection of circles (A1FcD2) and (B1FcC2) in (6).

Corollary 13. W is a common point of the following eight circles:
(A1FbB2), (A1FcD2), (B1FcC2), (B1FdA2),
(C1FdD2), (C1FaB2), (D1FaA2), (D1FbC2).

(6)

Remark. This property can be viewed as the generalization of the following prop-
erty of the circumcenter of a triangle:
Given a triangle ABC with sides a, b, c opposite to vertices A,B,C , let Fkl de-

note the feet of the perpendicular bisector to side k on the side l (or its extension),
where k, l ∈ {a, b, c}. Then the circumcenter is the common point of three cir-
cles going through vertices and feet of the perpendicular bisectors in the following
way 5:

O = (ABFabFba) ∩ (BCFbcFcb) ∩ (CAFcaFac), (7)
see Figure 10.

The similarity between (7) and (6) supports the analogy of the isoptic point with
the circumcenter.
The last corollary provides a quick way of constructing W . First, construct two

vertices (e.g., A2 and D2) of the second generation by intersecting the perpendic-
ular bisectors. Let Fd be the intersection of the lines A2D2 and B1C1. Then W
is obtained as the second point of intersection of the two circles (B1FbA2) and
(C1FbD2).

5Note also that this statement is related to Miquel’s theorem as follows. Take any three points
P, Q, R on the three circles in (7), so that A, B,C are points on the sides PQ, QR, PQ of PQR.
Then the statement becomes Miquel’s theorem for PQR and points A,B, C on its sides, with the
extra condition that the point of intersection of the circles (PAC), (QAB), (RBC) is the circum-
center of ABC.
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A

B C

Fab

Fac

Fbc

FbaFca

Fcb

O

Figure 10. Circumcenter as intersection of circles in (7).

Recall the definition of isodynamic points of a triangle. Let A1A2A3 be a tri-
angle with sides a1, a2, a3 opposite to the vertices A1, A2, A3. For each i, j ∈
{1, 2, 3}, where i "= j, consider the circle oij centered at Ai and going through
Aj . The circle of similitude CS(oij , okj) of two distinct circles oij and okj is the
Apollonian circle with respect to points Ai, Ak with ratio rik = ak

ai

. It is easy to
see that the three Apollonian circles intersect in two points, S and S′, which are
called the isodynamic points of the triangle.
Here are some properties of isodynamic points (see, e.g., [6], [4] for more de-

tails):
(1) The distances from S (and S′) to the vertices are inversely proportional to

the opposite side lengths:

|SA1| : |SA2| : |SA3| =
1

a1

:
1

a2

:
1

a3

. (8)

Equivalently,

|SAi| : |SAj | = sinαj : sinαi, i "= j ∈ {1, 2, 3},

where αi is the angle ∠Ai in the triangle. The isodynamic points can be
characterized as the points having this distance property. Note that since
the radii of the circles used to define the circles of similitude are the sides,
the last property means that distances from isodynamic points to the ver-
tices are inversely proportional to the radii of the circles.

(2) The pedal triangle of a point on the plane of A1A2A3 is equilateral if and
only if the point is one of the isodynamic points.
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(3) The triangle whose vertices are obtained by inversion of A1, A2, A3 with
respect to a circle centered at a point P is equilateral if and only if P is one
of the isodynamic points of A1A2A3.

It turns out thatW has properties (Corollary 14, Theorem 30, Theorem 27) similar
to properties 1–3 of S.

Corollary 14. (Isodynamic property of W ) The distances from W to the vertices
of the quadrilateral are inversely proportional to the radii of the triad-circles going
through the remaining three vertices:

|WA1| : |WB1| : |WC1| : |WD1| =
1

R3

:
1

R4

:
1

R1

:
1

R2

,

whereRi is the radius of the triad-circle oi. Equivalently, the ratios of the distances
from W to the vertices are as follows:

|WA1| : |WB1| = |A1C1| sin γ : |B1D1| sin δ,

|WA1| : |WC1| = sin γ : sinα,

|WB1| : |WD1| = sin δ : sinβ.

From analysis of similar triangles in the iterative process, it is easy to see that
the limit point of the process satisfies the above distance relations. Therefore,
W (defined at the beginning of this section as the second point of intersection of
CS(o1, o2) and CS(o1, o4)) is the limit point of the iterative process.
One more property expresses W as the image of a vertex of the first generation

under the inversion in a triad circle of the second generation. Namely, we have the
following

Theorem 15 (Inversive property of W).
W = Inv

o
(2)

1

(A1) = Inv
o
(2)

2

(B1) = Inv
o
(2)

3

(C1) = Inv
o
(2)

4

(D1). (9)

B C

D

A

A2

B2
C2

D2

W

A3

Figure 11. Inversive property ofW

Proof. To prove the first equality, perform inversion in a circle centered at A1. The
image of a point under the inversion will be denoted by the same letter with a prime.
The images of the circles of similitude CS(o1, o2), CS(o4, o1) and CS(o2, o4) are
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the perpendicular bisectors of the segments A′2B
′

2, D′2A′2 and B′2D
′

2 respectively.
By Theorem 9, these perpendicular bisectors intersect in W ′. Since W ′ is the
circumcenter of D′2A′2B′2, it follows that Invo

(2)′

1

(W ′) = A′1. Inverting back in the
same circle centered at A1, we obtain Invo

(2)

1

(W ) = A1. The rest of the statements
follow analogously. "

The fact that the inversions of each of the vertices in triad circles defined by the
remaining three vertices coincide in one point was proved by Parry and Longuet-
Higgins in [14].
Notice that the statement of Theorem 15 can be rephrased in a way that does

not refer to the original quadrilateral, so that we can obtain a property of circum-
centers of four triangles taking a special configuration on the plane. Recall that an
inversion takes a pair of points which are inverses of each other with respect to a
(different) circle into a pair of points which are inverses of each other with respect
to the image of the circle, that is if S = Invk(T ), then S′ = Invk′(T ′), where ′
denotes the image of a point (or a circle) under inversion in a given circle. Using
this and property 2 of circles of similitude, we obtain the corollary below. In the
statement, A,B,C, P,X, Y, Z,O play the role of A′

2
, B′

2
,D′

2
, A1, B

′

1
, C ′

1
,D′

1
,W ′

1

in Theorem 15.

Corollary 16. Let P be a point on the plane of ABC . Let points O, X, Y and Z
be the circumcenters of ABC , APB, BPC and CPA respectively. Then

Inv(ZOX)(A) = Inv(XOY )(B) = Inv(Y OZ)(C) = Inv(XY Z)(P ). (10)
Furthermore,

IsoZOX(A) = Y, IsoXOY (B) = Z, IsoY OZ(C) = X.

A

B C

O

X

YZ

P

Figure 12. Corollary 16.

Combining the description of the reverse iterative process (Theorem 2) and the
inversive property of W (Theorem 15), we obtain one more direct way of con-
structing W without having to refer to the iterative process:
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Theorem 17. Let A,B,C,D be four points in general position. Then

W = Invo3
◦IsoT3

(A1) = Invo4
◦IsoT4

(B1) = Invo1
◦IsoT1

(C1) = Invo2
◦IsoT2

(D1),

where oi is the ith triad circle, and Ti is the ith triad triangle.

This property suggests a surprising relation between inversion and isogonal con-
jugation.
Taking into account that the circumcenter and the orthocenter of a triangle are

isogonal conjugates of each other, we obtain the following

Corollary 18. W is the point at infinity if and only if the vertices of the quadrilat-
eral form an orthocentric system.

3.4. W as the center of similarity for any pair of triad circles. To show that W
is the center of spiral similarity for any pair of triad circles (of possibly different
generations), we first need to prove Lemmas 19—21 below.
The following lemma shows that given three points on a circle — two fixed and

one variable — the locus of the joint points of the spiral similarities taking one
fixed point into the other applied to the variable point is a line.

Lemma 19. Let M,N ∈ o and W /∈ o. For every point L ∈ o, define

J := (MWL) ∩NL.

The locus of points J is a straight line going through W .

O

M

L

N

W

J

K

k o

Figure 13. Lemma 19.

Proof. For each point L ∈ o, let K be the center of the circle k := (MWL). The
locus of centers of the circles k is the perpendicular bisector of the segment MW .
Since M ∈ o ∩ k, there is a spiral similarity centered atM with joint point L that
takes k into o. This spiral similarity takes K -→ O and J -→ N , where O is the
center of o. Thus, MOK 1 MNJ . Since M,O,K are fixed and the locus of K
is a line (the perpendicular bisector), the locus of points J is also a line.
To show that the line goes through W , let L = NW ∩ o. Then J = W . "
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In the setup of the lemma above, letHW
L,N be the spiral similarity centered atW

that takes L into N . Let M ′ be the image of M under this spiral similarity. Then
J is the joint point for the spiral similarity taking L -→ N andM -→M ′.
The following two results are used for proving thatW lies on the circle of simil-

itude of o3 and o
(2)

1
.

Lemma 20. Let AC , ZX be two distinct chords of a circle o, and W be the center
of spiral similarity taking ZX into AC . LetHW

B,C be the spiral similarity centered
at W that takes a point B ∈ o into C . Then HW

B,C(Z) ∈ o.

O

A
B

C

W

X

Y

Z

J1

J2

Figure 14. Lemma 20.

Proof. Let l be the locus of the joint points corresponding to M = Z , N = C in
Lemma 19. Let J1 be the joint point corresponding to L = B. Then J1,W ∈ l.
Let J2 be the joint point corresponding to M = C , N = Z and L = B in

Lemma 19.
Let Y = J2C ∩ J1Z . By properties of spiral similarity, Y = HW

B,C(Z).
Notice that by definition of J1, points J1, B,C are on a line. Similarly, by defini-

tion of J2, points J2, B, Z are on a line as well. By definition of Y , points Y, J2, C
are on a line, as are points Z, Y, J1. The intersections of these four lines form
a complete quadrilateral. By Miquel’s theorem, the circumcircles of the triangles
BJ1Z, BJ2C, J2Y Z, CJ1Y have a common point, the Miquel point for the com-
plete quadrilateral. By definitions of J1 and J2 , (BJ2C) ∩ (BZJ1) = {B,W}.
Thus, the Miquel point is either B or W . It is easy to see that B can not be the
Miquel point (if B "= C,Z). Thus, W is the Miquel point of the complete quadri-
lateral. This implies that (Y CJ1), (Y ZJ2) both go through W .
Consider the circles k1 = (ZWJ2Y ) and k2 = (CWJ2B). ThenRA(k1, k2) =

l. Since ZY ∩ BC = J1 ∈ l = RA(k1, k2), by property 7 in section 3.1, points
Z, Y,B,C are on a circle. Thus, Y ∈ o. "
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Remark. Notice that in the proof of the Lemma above there are three spiral simi-
larities centered at W that take each of the sides of XY Z into the corresponding
side of CBA. We will call such a construction a cross-spiral and say that the two
triangles are obtained from each other via a cross-spiral. 6

Lemma 21. Let PQ be a chord on a circle o centered at O. If W /∈ (POQ), there
is a spiral similarity centered at W that takes PQ into another chord of the circle
o.

O OQ

Q

W
P

oQ

o

Figure 15. Proof of Lemma 21.

Proof. Let HW
P,P ′ be the spiral similarity centered at W that takes P into another

point P ′ on circle o. AsP ′ traces out o, the imagesHW
P,P ′(Q) ofQ trace out another

circle, oQ. To see this, consider the associated spiral similarity and notice that
HW

P,Q(P ′) = Q′. Since P ′ traces out o, HW
P,Q(o) = oQ. Since Q = HW

P,P (Q) ∈
oQ, it follows that Q ∈ o ∩ oQ.
Suppose that o and oQ are tangent at Q. From HP,Q(o) = oQ it follows that

the joint point is Q, and therefore the quadrilateral PQWO must be cyclic. Since
W /∈ (POQ), this can not be the case. Thus, the intersection o ∩ oQ contains two
points, Q and Q′. This implies that there is a unique chord, P ′Q′, of o to which
PQ can be taken by a spiral similarity centered atW . "

Theorem 22. W ∈ CS(o3, o
(2)

1
).

Proof. We’ve shown previously thatW is on all six circles of similitude ofA1B1C1D1.
SinceW has the property that

HW
C1,B2

: C1 -→ B2,D1 -→ A2,

HW
B1,A2

: B1 -→ A2, C1 -→ D2,

it follows that
HW

B2,C1
HW

B1,A2
(B1) = HW

B2,C1
(A2) = D1.

6Clearly, the sides of any triangle can be taken into the sides of any other triangle by three spiral
similarities. The special property of the cross-spiral is that the centers of all three spiral similarities
are at the same point.
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Since the spiral similarities centered atW commute, it follows that
HW

B2,C1
HW

B1,A2
(B2) = HW

B1,A2
HW

B2,C1
(B2) = HW

B1A2
(C1) = D2.

This means that there is a spiral similarity centered at W that takes B1D1 into
B2D2. Therefore, B1C1D1 and D2A2B2 are related by a cross-spiral centered at
W .
We now show that there is a cross-spiral that takes D2A2B2 into another trian-

gle, XY Z , with vertices on the same circle, o(2)

1
= (D2A2B2). This will imply

that there is a spiral similarity centered atW that takes B1C1D1 into XY Z . This,
in turn, implies that W is a center of spiral similarity taking o3 into o

(2)

1
.

Assume that W ∈ (B2A3D2). Since inversion in (D2A2B2) takes W into A1

and (B2A3D2) into B2D2, it follows that A1 ∈ B2D2. This can not be the case
for a nondegenerate quadrilateral. Thus,W ∈ (B2A3D2).
By Lemma 21, there is a spiral similarity centered at W that takes the chord

B2D2 into another chord, XZ , of the circle (D2A2B2). Thus, there is a spiral
similarity taking B2D2 into XZ and centered atW .
By Lemma 20, there is a point Y ∈ o

(2)

1
such thatXY Z andB2A2D2 are related

by a cross-spiral centered atW . (See also the remark after Lemma 20).
By composing the two cross-spirals, we conclude thatXY Z ∼ D1C1B1. Since

(XY Z) = o
(2)

1
and (D1C1B1) = o3, it follows that W ∈ CS(o(2)

1
, o3). "

Corollary 23. W ∈ CS(o(1)

i , o
(k)

j ) for any i, j, k.

Proof. Since there is a spiral similarity centered atW that takes A1B1 into C2D2,
Theorem 22 implies that W ∈ CS(o1, o

(2)

4
). Since W ∈ CS(o1, o2), it follows

that W ∈ CS(o(2)

4
, o2). Since W is on two circles of similitude for the second

generation, it follows that it is on all four. Furthermore, we can apply Theorem 22
to the triad circles of the second and third generation to show that W is also on all
four circles of similitude of the third generation.
Finally, a simple induction argument shows thatW ∈ CS(o(1)

j , o
(k)

i ). Assuming
W ∈ CS(o(1)

j , o
(k−1)

i ), Theorem 22 implies that W ∈ CS(o(k−1)

i , o
(k)

i ). Thus,
W ∈ CS(o(1)

j , o
(k)

i ). "

Using this, we can show thatW lies on all the circles of similitude:

Theorem 24. W ∈ CS(o(k)

i , o
(l)
j ) for all i, j ∈ {1, 2, 3, 4} and any k, l.

Recall that the complete quadrangle is the configuration of 6 lines going through
all possible pairs of 4 given vertices.

Theorem 25. (Inversion in a circle centered at W ) Consider the complete quad-
rangle determined by a nondegenerate quadrilateral. Inversion in W transforms

• 6 lines of the complete quadrilateral into the 6 circles of similitude of the
triad circles of the image quadrilateral;

• 6 circles of similitude of the triad circles into the 6 lines of the image quad-
rangle.
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Proof. Observe that the 6 lines of the quadrangle are the radical axes of the triad
circles taken in pairs. Since W belongs to all the circles of similitude of triad
circles, by property 5 in section 3.1, inversion in a circle centered in W takes
radical axes into the circles of similitude. This implies the statement. "

4. Pedal properties

4.1. Pedal ofW with respect to the original quadrilateral. SinceW has a distance
property similar to that of the isodynamic points of a triangle (see Corollary 14), it
is interesting to investigate whether the analogy between these two points extends
to pedal properties. In this section we show that the pedal quadrilateral of W
with respect to A1B1C1D1 (and, more generally, with respect to any Q(n)) is a
nondegenerate parallelogram. Moreover, W is the unique point whose pedal has
such a property. These statements rely on the fact that W lies on the intersection
of two circles of similitude, CS(o1, o3) and CS(o2, o4).
First, consider the pedal of a point that lies on one of these circles of similitude.

Lemma 26. LetPaPbPcPd be the pedal quadrilateral ofP with respect toABCD1.
Then

• PaPbPcPd is a trapezoid with PaPd||PbPc if and only if P ∈ CS(o2, o4);
• PaPbPcPd is a trapezoid with PaPb||PcPd if and only if P ∈ CS(o1, o3).

Proof. Assume that P ∈ CS(o2, o4). LetK = AC ∩ PaPd and L = AC ∩ PbPc.
We will show that ∠AKPd + ∠CLPc = π, which implies PaPd||PbPc.
Let θ = ∠APPa. Since APaPPd is cyclic, ∠APdPa = θ. Then

∠AKPd = π − α1 − θ. (11)
On the other hand, ∠CLPc = π−γ2−∠LPcC . Since PPbCPc is cyclic, it follows
that ∠LPcC = ∠PbPC.
We now find the latter angle. Since P ∈ CS(o2, o4), by property (5) of the

circle of similitude (see §3.1), it follows that ∠APC = π+ δ+β. Since PaPPbB
is cyclic, ∠PaPPb = π − β. Therefore, ∠PbPC = δ − θ. This implies that

∠CLPc = π − γ2 − δ + θ. (12)
Adding (11) and (12), we obtain ∠AKPd + ∠CLPc = π.
Reasoning backwards, it is easy to see that PaPd||PbPc implies that P ∈ CS(o2, o4).

"

Let S be the second point of intersection of CS(o1, o3) and CS(o2, o4), so that
CS(o1, o3) ∩ CS(o2, o4) = {W,S}. The Lemma above implies that the pedal
quadrilateral of a point is a parallelogram if and only if this point is eitherW or S.
Theorem 27. The pedal quadrilateral ofW is a parallelogram whose angles equal
to those of the Varignon parallelogram.
Proof. SinceW ∈ CS(o1, o2)∩CS(o3, o4), property (5) of the circle of similitude
implies that

∠AWB = ∠ACB + ∠ADB = γ1 + δ2,

∠CWD = ∠CAD + ∠CBD = α1 + β2,
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Pa

Pb

Pc

Pd

Figure 16. The pedal quadrilateral of a point on CS(o2, o4) has two parallel sides.

where αi,βi, γi, δi are the angles between the quadrilateral’s sides and diagonals,
as before (see Figure 3). Let ∠AWWa = x and ∠WcWC = y. Since the quadri-
lateralsWaWWdA andWcWWbC are cyclic, ∠WaWdA = x and ∠WcWbC = y.
Therefore,

∠WaWbB = ∠AWB − ∠AWWa = γ1 + δ2 − x,

∠WcWdD = ∠CWD −∠WcWC = α1 + β2 − y.

Finding supplements and adding, we obtain

∠WaWdWc + ∠WaWbWc = (π − x− α1 − β2 + y) + (π − y − γ1 − δ2 + x)

= 2π − α1 − β2 − γ1 − δ2

= 2π − (2π − 2∠AIC) = 2∠AIC,

where ∠AIC is the angle formed by the intersection of the diagonals. Thus,
WaWbWcWd is a parallelogram with the same angles as those of the Varignon
parallelogram MaMBMbMc, where Mx is the midpoint of side x, for any x ∈
{a, b, c, d}. "

B C

D

A

Wa

Wb

Wc

Wd

W

Figure 17. The pedal parallelogram of W.

It is interesting to note the following
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Corollary 28. The pedal of W with respect to the self-intersecting quadrilateral
ACBD (whose sides are the two diagonals and two opposite sides of the original
quadrilateral) is also a parallelogram.

The Theorem above also implies that the pedal ofW is nondegenerate. (We will
see later that the pedal of S degenerates to four points lying on a straight line).
While examples show that the pedal of W and the Varignon parallelogram have
different ratios of sides (and, therefore, are not similar in general), it is easy to see
that they coincide in the case of a cyclic quadrilateral:

Corollary 29. The Varignon parallelogramMaMbMcMd is a pedal parallelogram
of a point if and only if the quadrilateral is cyclic and the point is the circumcenter.
In this case, MaMbMcMd = WaWbWcWd.

Theorem 30. The pedal quadrilateral of a point with respect to quadrilateral
ABCD is a nondegenerate parallelogram if and only if this point is W .

Proof. By Lemma 26, if P ∈ CS(o1, o3)∩CS(o2, o4), then both pairs of opposite
sides of the pedal quadrilateral PaPbPcPd are parallel.
Assume that the pedal quadrilateral PaPbPcPd of P is a nondegenerate parallel-

ogram. Since PdAPaP is a cyclic quadrilateral,

|PaPd| =
|PA|

2 sinα
,

|PbPc| =
|PC|

2 sin γ
.

The assumption |PaPd| = |PbPc— implies that |PA| : |PC| = sin γ : sinα. Sim-
ilarly, |PaPb| = |PcPd| implies |PB| : |PD| = sin δ : sin β, so that P must be on
the Apollonian circle with respect to A,C with ratio sin γ : sinα and on the Apol-
lonian circle with respect toB,D with ratio sin δ : sin β. These Apollonian circles
are easily shown to be CS(o(0)

1
, o

(0)

3
) and CS(o(0)

2
, o

(0)

4
), the circles of similitude

of the previous generation quadrilateral. One of the intersections of these two cir-
cles of similitude is W . Let Y be the other point of intersection. Computing the
ratios of distances from Y to the vertices, one can show that the pedal of Y is an
isosceles trapezoid. That is, instead of two pairs of equal opposite sides, it has one
pair of equal opposite sides and two equal diagonals. This, in particular, means
that Y does not lie on CS(o1, o3)∩CS(o2, o4). It follows thatW is the only point
for which the pedal is a nondegenerate parallelogram. "

Remark. Note that another interesting pedal property of a quadrilateral was proved
by Lawlor in [9, 10]. For each vertex, consider its pedal triangle with respect to
the triangle formed by the remaining vertices. The four resulting pedal triangles
are directly similar to each other. Moreover, the center of similarity is the so-called
nine-circle point, denoted byH in Scimemi’s paper [17].

4.2. Simson line of a quadrilateral. Recall that for any point on the circumcircle
of a triangle, the feet of the perpendiculars dropped from the point to the triangle’s
sides lie on a line, called the Simson line corresponding to the point (see Figure
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18). Remarkably, in the case of a quadrilateral, Lemma 26 and Theorem 30 imply
that there exists a unique point for which the feet of the perpendiculars dropped to
the sides are on a line (see Theorem 31 below).
In the case of a noncyclic quadrilateral, this point turns out to be the second

point of intersection of CS(o1, o3) and CS(o2, o4), which we denote by S. For
a cyclic quadrilateral ABCD with circumcenter O, even though all triad circles
coincide, one can view the circles (BOD) and (AOC) as the replacements of
CS(o1, o3) and CS(o2, o4) respectively. The second point of intersection of these
two circles, S ∈ (BOD) ∩ (AOC), S "= W also has the property that the feet of
the perpendiculars to the sides lie on a line. Similarly to the noncyclic case (see
Lemma 26), one can start by showing that the pedal quadrilateral of a point is a
trapezoid if and only if the point lies on one of the two circles, (BOD) or (AOC).
In analogy with the case of a triangle, we will call the line SaSbScSd the Simson

line and S the Simson point of a quadrilateral, see Fig. 18.

P

B C

Pa

Pb

Pc

A

A

B C

D

Wa

Wb

Wc

Wd

S

Figure 18. A Simson line for a triangle and the Simson line of a quadrilateral.

Theorem 31. (The Simson line of a quadrilateral) The feet of the perpendiculars
dropped to the sides from a point on the plane of a quadrilateral lie on a straight
line if and only if this point is the Simson point.

Unlike in the case of a triangle, where every point on the circumcircle produces
a Simson line, the Simson line of a quadrilateral is unique. When the original
quadrilateral is a trapezoid, the Simson point is the point of intersection of the two
nonparallel sides. In particular, when the original quadrilateral is a parallelogram,
the Simson point is point at infinity. The existence of this point is also mentioned
in [6].
Recall that all circles of similitude intersect at W . The remaining

(

6

2

)

= 15
intersections of pairs of circles of similitude are the Simson points with respect
to the

(

6

4

)

= 15 quadrilaterals obtained by choosing 4 out of the lines forming
the complete quadrangle. Thus for each of the 15 quadrilaterals associated to a
complete quadrangle there is a Simson point lying on a pair of circles of similitude.
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4.3. Isogonal conjugation with respect to a quadrilateral. Recall that the isogonal
conjugate of the first isodynamic point of a triangle is the Fermat point, i.e., the
point minimizing the sum of the distances to vertices of the triangle. Continuing to
explore the analogy of W with the isodynamic point, we will now define isogonal
conjugation with respect to a quadrilateral and study the properties of W and S
with respect to this operation.
Let P be a point on the plane of ABCD. Let lA, lB , lC , lD be the reflections of

the lines AP,BP,CP,DP in the bisectors of ∠A, ∠B, ∠C and ∠D respectively.

Definition. Let PA = lA ∩ lB, PB = lB ∩ lC , PC = lC ∩ lD, PD = lD ∩ lA. The
quadrilateral PAPBPCPD will be called the isogonal conjugate of P with respect
to ABCD and denoted by IsoABCD(P ).

B C

D

A

PA

PB

PC

PD

P

Figure 19. Isogonal conjugation with respect to a quadrilateral

The following Lemma relates the isogonal conjugate and pedal quadrilaterals of
a given point:

Lemma 32. The sides of the isogonal conjugate quadrilateral and the pedal quadri-
lateral of a given point are perpendicular to each other.

Proof. Let bA be the bisector of the∠DAB. Let I = lA∩PaPd and J = bA∩PaPd.
Since APaPPd is cyclic, it follows that ∠PdAP = ∠PdPaP . Since PPa ⊥ PaA,
it follows that AI ⊥ PaPd. Therefore, PAPD ⊥ PaPd. The same proof works for
the other sides, of course. "

The Lemma immediately implies the following properties of the isogonal con-
jugates ofW and S:

Theorem 33. The isogonal conjugate of W is a parallelogram. The isogonal con-
jugate of S is the degenerate quadrilateral whose four vertices coincide at infinity.

The latter statement can be viewed as an analog of the following property of
isogonal conjugation with respect to a triangle: the isogonal conjugate of any point
on the circumcircle is the point at infinity.
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Figure 20. Lemma 32.

4.4. Reconstruction of the quadrilateral. The paper by Scimemi [17] has an exten-
sive discussion of how one can reconstruct the quadrilateral from its central points.
Here we just want to point out the following 3 simple constructions:

(1) GivenW and its pedal parallelogramWaWbWcWd with respect toA1B1C1D1,
one can reconstruct A1B1C1D1 by drawing lines throughWa,Wb,Wc,Wd

perpendicular to WWa,WWb,WWc,WWd respectively. The construc-
tion is actually simpler than reconstructing A1B1C1D1 from midpoints of
sides i.e., vertices of the Varignon parallelogram and the point of intersec-
tion of diagonals.

(2) Similarly, one can reconstruct the quadrilateral from the Simson point S
and the four pedal points of S on the Simson line.

(3) Given three vertices A1, B1, C1 and W , one can reconstruct D1. Here is
one way to do this. The given points determine the circles o2 = (A1B1C1),
CS(o2, o1) = (A1WB1) and CS(o2, o3) = (B1WC1). Given o2 and
CS(o2, o1), we construct the center of o1 as A2 = InvCS(o2,o1)

(B2) (see
property 2 in the Preliminaries of Section 3). Similarly, C2 = InvCS(o2,o3)

(B2).
Then D1 is the second point of intersection of o1 (the circle centered at
A2 and going through A1, B1) and o3 (the circle centered at C2 and go-
ing through B1, C1). Alternatively, one can use the property that D1 =
IsoT2

◦ Invo2
(W ).
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