MATHEMATICAL ASSOCIATION

supporting mathematics in education

Quadrilaterals of triangle centres
Author(s): MARIA FLAVIA MAMMANA and BIAGIO MICALE
Source: The Mathematical Gazette, Vol. 92, No. 525 (November 2008), pp. 466-475
Published by: The Mathematical Association
Stable URL: http://www.jstor.org/stable/27821832
Accessed: 17/01/2015 07:40

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @jstor.org.

The Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette.

Quadrilaterals of triangle centres

MARIA FLAVIA MAMMANA and BIAGIO MICALE

Introduction

Let Q be a convex quadrilateral $A B C D$. We denote by $T_{A}, T_{B}, T_{C}, T_{D}$, the four triangles $B C D, C D A, D A B, A B C$, respectively.

The barycentres (or centroids), orthocentres, incentres and circumcentres of such triangles determine other quadrilaterals in their turn that we call the quadrilateral of the barycentres, of the orthocentres, of the incentres and of the circumcentres, respectively. We denote these quadrilaterals by $Q_{b}, Q_{o}, Q_{i}, Q_{c}$, respectively.

Interesting properties have been found for quadrilaterals Q_{b}, Q_{o}, Q_{i} in the case when Q is cyclic (that is, Q is inscribable in a circle, whose centre is called circumcentre of $Q): Q_{b}$ is similar to Q, Q_{o} is congruent to Q, Q_{i} is always a rectangle (cf. [1, 2]). As far as Q_{c} is concerned, it has been proved that if Q is not cyclic, the quadrilateral of the circumcentres relative to Q_{c} is similar to Q (cf. [1, 3, 4]). Observe that if Q is cyclic, then Q_{c} is a point.

In this work, other properties of the quadrilaterals $Q_{b}, Q_{o}, Q_{i}, Q_{c}$ are determined. Here are our main results:

- the quadrilateral of the barycentres, Q_{b}, relative to any quadrilateral Q, is the correspondent of Q in the inverse homothety, of ratio 1:3, with the centroid of Q at its centre (section 1).
- the quadrilateral of orthocentres, Q_{o}, relative to a cyclic quadrilateral Q, is the correspondent of Q in the half-turn about the anticentre of Q (section 2).
- if the quadrilateral of the incentres, Q_{i}, relative to a quadrilateral Q, is a rectangle, then Q is cyclic (section 3).
- the quadrilateral of the circumcentres, Q_{c}, relative to a noncyclic quadrilateral Q, is affine to Q (section 4).
We also prove that the quadrilateral, Q_{m}, determined by the maltitudes of a non-cyclic quadrilateral Q is affine to Q (section 5).

As these results are easy to prove, material represented here can be utilised in research laboratories with students, as showed in [5]. From this point of view a geometric software like Cabri Géomètre is very useful to explore geometric figures, to find out new properties and possible demonstration strategies.

At the end of the paper, the following conjecture is indicated, suggested by using Cabri: Let Q be any convex quadrilateral and Q_{0} be its quadrilateral of orthocentres: Q_{0} has the same area as Q and is affine to Q.

1. The quadrilateral of the barycentres

Let $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be the barycentres of the four triangles $T_{A}, T_{B}, T_{C}, T_{D}$. We call the quadrilateral Q_{b} with vertices $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$, the quadrilateral of the barycentres relative to Q.

We recall that the straight lines joining the midpoints of two opposite sides are called bimedians, and that their common point, called the centroid of Q, bisects them both.

Also, given a side of Q, the perpendicular line passing through the midpoint of the opposite side is called the maltitude relative to the given side. The four maltitudes of Q are concurrent in a point called the anticentre of Q, if, and only if, Q is cyclic. If Q is cyclic, the anticentre and the circumcentre are symmetric with respect to the centroid of Q (cf. [6, 7, 8]).

Theorem 1

The quadrilateral of the barycentres, Q_{b}, is directly similar to Q. More precisely, Q_{b} is the correspondent of Q in the inverse homothety, of ratio 1:3, with the centroid of Q at the centre.

FIGURE 1
The proof is simple using vectors (cf. [1]). If P is any point and G is the
 $\overrightarrow{P A^{\prime}}=\frac{1}{3}(\overrightarrow{P B}+\overrightarrow{P C}+\overrightarrow{P D})$, hence

$$
\begin{aligned}
\overrightarrow{A^{\prime} G} & =\overrightarrow{P G}-\overrightarrow{P A^{\prime}}=\frac{1}{12}(3 \overrightarrow{P A}-\overrightarrow{P B}-\overrightarrow{P C}-\overrightarrow{P D}) \\
& =\frac{1}{3}\left(\overrightarrow{P A}-\frac{1}{4}(\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}+\overrightarrow{P D})\right)=\frac{1}{3}(\overrightarrow{P A}-\overrightarrow{P G})=\frac{1}{3} \overrightarrow{G A},
\end{aligned}
$$

which suffices.

Also, any quadrilateral Q^{\prime} can be considered as a quadrilateral of the barycentres relative to a particular quadrilateral, more precisely the quadrilateral correspondent of Q^{\prime} in the inverse homothety of ratio 3 having the centroid of Q^{\prime} as its centre.

Let us observe that if Q is cyclic, then also Q_{b} is cyclic. Also, the anticentres of Q and Q_{b} correspond in the homothety φ as well as Q and Q_{b} circumcentres. Since in a cyclic quadrilateral, the anticentre and the circumcentre are correspondent in the half-turn about the centroid, we have that the anticentres and the circumcentres of Q and Q_{b} as well as their common centroid G are collinear.

2. The quadrilateral of the orthocentres

Let $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be the orthocentres of triangles $T_{A}, T_{B}, T_{C}, T_{D}$ respectively. We call the quadrilateral of the orthocentres relative to Q the quadrilateral Q_{o} with vertices $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$.

Theorem 2

If Q is a cyclic quadrilateral, then the quadrilateral of the orthocentres Q_{O} is directly congruent to Q. More precisely, Q_{O} is the correspondent of Q in the half-turn about the anticentre of Q.

FIGURE 2
Let us suppose Q to be cyclic. We denote with O the circumcentre, with G the centroid, with O^{\prime} the anticentre of Q (Figure 2).

In the triangle $T_{A}, \overrightarrow{O A^{\prime}}=\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}$. Since O and O^{\prime} are symmetric with respect to G, then $\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D})=\overrightarrow{O O^{\prime}}$. It follows that O^{\prime} is the midpoint of segment $\overrightarrow{A A^{\prime}}$, which suffices.

From Theorem 2 it follows that any cyclic quadrilateral Q^{\prime} can be considered as a quadrilateral of the orthocentres relative to a particular quadrilateral, more precisely the quadrilateral correspondent of Q^{\prime} in the half-turn about the anticentre of Q^{\prime}.

Besides, we observe that Q and Q_{o} have the same anticentre O^{\prime} and that their circumcentres, as well as their centroids, are correspondent in the halfturn about O^{\prime}. It follows that circumcentres and centroids of Q and Q_{o} and their common anticentre O^{\prime} are collinear.

Considering what was observed in section 1 , we can state that in a cyclic quadrilateral Q, centroids, circumcentres and anticentres of Q, Q_{b} and Q_{o} are all collinear.

3. The quadrilateral of the incentres

Let $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be the incentres of triangles $T_{A}, T_{B}, T_{C}, T_{D}$ respectively. We call the quadrilateral Q_{i} with vertices $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ the quadrilateral of the incentres relative to Q.

Theorem 3

The quadrilateral Q_{i} of the incentres relative to a quadrilateral Q is a rectangle if, and only if, Q is cyclic.

Figure 3a
It is known that if Q is a cyclic quadrilateral, then Q_{i} is a rectangle (cf. $[1,2])$. We now give a proof of this.

Consider the circumcircle of Q (Figure 3a). The straight lines $C D^{\prime}$ and $D C^{\prime}$ pass through the midpoint H of the arc $A B$.

Now $B H=A H$. Moreover, $\angle H B A=\angle H C A=\angle B C H$ and $\angle D^{\prime} B C=\angle A B D^{\prime}$, hence

$$
\angle H B D^{\prime}=\angle H B A+\angle A B D^{\prime}=\angle B C H+\angle C B D^{\prime}=\angle H D^{\prime} B .
$$

So the triangle $B H D^{\prime}$ is isosceles and $B H=D^{\prime} H$. Similarly, $A H=C^{\prime} H$. Hence the points $B, D^{\prime}, C^{\prime}, A$ belong to the circle through B with centre H.

If K is the midpoint of the arc $C D$, then $H K$, being the internal bisector of $\angle D^{\prime} H C^{\prime}$, is the perpendicular bisector of $C^{\prime} D^{\prime}$. For the same reason, $H K$ is also the perpendicular bisector of $A^{\prime} B^{\prime}$. It follows that Q_{i} is an isosceles trapezium. The same reasoning also shows that the straight line joining the midpoints of the arcs $C B$ and $A D$ is the common perpendicular bisector of $A^{\prime} D^{\prime}$ and $B^{\prime} C^{\prime}$. Hence Q_{i} is a rectangle.

We prove now that if Q is a non-cyclic quadrilateral, then Q_{i} is not a rectangle.

The circle passing through B, C, D does not contain A. Let us suppose that the straight line $A C$ meets the circle at A_{1}.

Let $A^{\prime}, D^{\prime}, B^{\prime}$ be the incentres of the triangles $T_{A} T_{D}, T_{B}$; let $D_{1}^{\prime}, B_{1}^{\prime}$ be the incentres of the triangles $A_{1} B C, C D A_{1}$; let E^{\prime} and E_{1}^{\prime} be the points in which the straight line $C A^{\prime}$ meets $B^{\prime} D^{\prime}$ and $B_{1}{ }^{\prime} D_{1}^{\prime}$ respectively. Let us prove that the angle $\angle B^{\prime} A^{\prime} D^{\prime}$ is not right.

Let us suppose that A is inside the circle (Figure 3b). Then $\angle A D C<\angle A_{1} D C$. Since $D B^{\prime}$ and $D B_{1}{ }^{\prime}$ are internal bisectors of the angles $\angle A D C$ and $\angle A_{1} D C$ respectively, we have $\angle C D B^{\prime}=\angle C D B_{1}{ }^{\prime}$. It follows that B^{\prime} is an interior point of the segment $C B_{1}{ }^{\prime}$. Similarly, D^{\prime} is an interior point of the segment $C D_{1}^{\prime}$.

Then $\angle C A^{\prime} B^{\prime}<\angle C A^{\prime} B_{1}^{\prime}$ and their supplements $\angle B^{\prime} A^{\prime} E^{\prime}$ and $\angle B_{1} A^{\prime} E_{1}{ }^{\prime}$, are such that $\angle B^{\prime} A^{\prime} E^{\prime}>\angle B_{1}{ }^{\prime} A^{\prime} E_{1}{ }^{\prime}$. Similarly $\angle D^{\prime} A^{\prime} E^{\prime}>\angle D_{1}{ }^{\prime} A^{\prime} E_{1}{ }^{\prime}$. It follows that $\angle B^{\prime} A^{\prime} D^{\prime}>\angle B_{1}^{\prime} A^{\prime} D_{1}^{\prime}$. Since $A_{1} B C D$ is a cyclic quadrilateral, $\angle B_{1}{ }^{\prime} A^{\prime} D_{1}{ }^{\prime}$ is right, so $\angle B^{\prime} A^{\prime} D^{\prime}$ is obtuse. In a similar way we can prove that if A is outside the circle passing through B, C, D, then $\angle B^{\prime} A^{\prime} D^{\prime}$ is acute.

Therefore the quadrilateral of incentres relative to $A B C D$ is not a rectangle.

Let us consider now any quadrilateral Q and its quadrilateral of incentres Q_{i}.

It is easy to prove that if a point P is centre of symmetry for Q, then P is centre of symmetry for Q_{i}, too; and if a straight line r is the axis of symmetry passing through the vertices (respectively, not passing through vertices) for Q, then r is the axis of symmetry passing through vertices (respectively, not passing through vertices) for Q_{i}, too.

It follows that if Q is a parallelogram, Q_{i} is also a parallelogram; if Q is a kite, Q_{i} is also a kite; if Q is a rhombus, Q_{i} is also a rhombus.

We also observe that if Q is a cyclic kite, Q_{i} is a square (because it is a kite and a rectangle at the same time).

By using Cabri it appears that kites are not the only quadrilaterals Q such that Q_{i} is a square. We propose then the following open problem: determine all (cyclic) quadrilaterals Q such that Q_{i} is a square.

4. The quadrilateral of the circumcentres

Let $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be the circumcentres of triangles $T_{A}, T_{B}, T_{C}, T_{D}$ respectively. We call the quadrilateral Q_{c} with vertices $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ the quadrilateral of the circumcentres relative to Q. We have already observed that if Q is cyclic, then Q_{c} is reduced to a point, so we consider here only the case in which Q is not cyclic.

Let us make some preliminary remarks.
Let M be the common point of its diagonals $A C$ and $B D$. For the two ratios $\frac{A M}{M C}$ and $\frac{C M}{M A}$, let h be the one not greater than 1 . Also for the two ratios $\frac{B M}{M D}$ and $\frac{D M}{M B}$, let k be the one not greater than 1 . The pair $\{h, k\}$ is called the characteristic of Q ([9]). Q has characteristic $\{h, h\}$ if, and only if, it is a trapezium; Q has characteristic $\{1,1\}$ if, and only if, it is a parallelogram. In [9] it was proved that two quadrilaterals are affine if and only if they have the same characteristic.

Theorem 4

The quadrilateral Q_{c} of the circumcentres relative to a (non-cyclic) quadrilateral Q is affine to Q.
A^{\prime} is the centre of the circle passing through B, C, D and C^{\prime} is the centre of the circle passing through A, B, D, so the straight line $A^{\prime} C^{\prime}$ is
perpendicular to the radical axis, $B D$, of such circles (Figure 4a). Similarly, the straight line $B^{\prime} D^{\prime}$ is perpendicular to the line $A C$. Further, the lines $A^{\prime} B^{\prime}$, $B^{\prime} C^{\prime}, C^{\prime} D^{\prime}, A^{\prime} D^{\prime}$ are perpendicular to the lines $C D, A D, B A, C B$ respectively.

Figure 4a
It follows that the triangles $A B M$ and $C^{\prime} D^{\prime} M^{\prime}, B C M$ and $A^{\prime} D^{\prime} M^{\prime}, C D M$ and $A^{\prime} B^{\prime} M^{\prime}$ are similar. Therefore we have:
(1) $\frac{A M}{B M}=\frac{M^{\prime} D^{\prime}}{M^{\prime} C^{\prime}}$;
(2) $\frac{B M}{M C}=\frac{A^{\prime} M^{\prime}}{M^{\prime} D^{\prime}}$;
(3) $\frac{M C}{M D}=\frac{B^{\prime} M^{\prime}}{A^{\prime} M^{\prime}}$.

By multiplying member by member (1) and (2) and then (2) and (3) we have:

$$
\frac{A M}{M C}=\frac{A^{\prime} M^{\prime}}{M^{\prime} C^{\prime}} ; \quad \frac{B M}{M D}=\frac{B^{\prime} M^{\prime}}{M^{\prime} D^{\prime}} .
$$

Thus, the quadrilaterals Q and Q_{c} have the same characteristic and are affine.

From Theorem 4, it follows that if Q is a trapezium, then Q_{c} is a trapezium and that if Q is a parallelogram, then Q_{c} is a parallelogram.

The proof of Theorem 4 shows that the two quadrilateral Q and Q_{c}, besides being affine, are such that the diagonals of Q are perpendicular to that of Q_{c} so the angles formed by the diagonals of Q are congruent to those formed by the diagonals of Q_{c}. Moreover, it can be easily proved that the angles of Q are supplementary of the angles of Q_{c}. For example, the angles
in H and in K of the quadrilateral $A^{\prime} H C K$ are right, so the angles in A^{\prime} and in C are supplementary, therefore the angle in A^{\prime} of Q_{c} is the supplement of the angle in C of Q. It follows that Q_{c} is not cyclic. In fact, if Q_{c} was cyclic, its opposite angles would be supplementary, so also the opposite angles of Q would be supplementary and so Q would be cyclic.

Since Q_{c} is not cyclic, we can consider the quadrilateral of the circumcentres, $\left(Q_{c}\right)_{c}$, relative to Q_{c}, with vertices $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, D^{\prime \prime}$ (Figure 4b). Let $M^{\prime \prime}$ be the common point of the diagonals $A^{\prime \prime} C^{\prime \prime}$ and $B^{\prime \prime} D^{\prime \prime}$.

Figure 4b

Theorem 5

The quadrilateral $\left(Q_{c}\right)_{c}$ is homothetic to Q.
In fact, Q and $\left(Q_{c}\right)_{c}$ have their sides and diagonals respectively parallel because they are perpendicular to the sides and diagonals of Q_{c} respectively. So Q and $\left(Q_{c}\right)_{c}$ have their angles respectively congruent. Further, triangles $A B D$ and $A^{\prime \prime} B^{\prime \prime} D^{\prime \prime}$ are similar as well as triangles $B C D$ and $B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$, so:

$$
\frac{A B}{A^{\prime \prime} B^{\prime \prime}}=\frac{A D}{A^{\prime \prime} D^{\prime \prime}}=\frac{B D}{B^{\prime \prime} D^{\prime \prime}} ; \quad \frac{B C}{B^{\prime \prime} C^{\prime \prime}}=\frac{C D}{C^{\prime \prime} D^{\prime \prime}}=\frac{B D}{B^{\prime \prime} D^{\prime \prime}} .
$$

We observe that quadrilaterals Q and $\left(Q_{c}\right)_{c}$, besides being similar, are such that the corresponding diagonals and sides are parallel, so they are also homothetic.

5. Quadrilateral of maltitudes

Finally, let us consider the maltitudes of the quadrilateral Q and the quadrilateral Q_{m} with vertices $\overline{A^{\prime}}, \overline{B^{\prime}}, \overline{C^{\prime}, D^{\prime}}$ that they determine (Figure 5). More precisely, $\overline{A^{\prime}}$ is the common point to the maltitudes $M_{1} H_{1}$ and $M_{2} H_{2}$ relative to sides $B C$ and $C D$ respectively; $\overline{B^{\prime}}$ is the common point to the maltitudes $M_{2} H_{2}$ and $M_{3} H_{3} ; \overline{C^{\prime}}$ is the common point to the maltitudes $M_{3} H_{3}$ and $M_{4} H_{4} ; \overline{D^{\prime}}$ is the common point to the maltitudes $M_{4} H_{4}$ and $M_{1} H_{1}$.

Figure 5

Theorem 6

The quadrilateral Q_{m} determined by the maltitudes of a non-cyclic quadrilateral Q is the correspondent of the quadrilateral of the circumcentres Q_{c} relative to Q in the half-turn about the centroid of Q.

In fact, M_{1} and M_{3} are symmetric with respect to the centroid G of Q, as well as M_{2} and M_{4}, therefore the half-turn about G transforms the maltitude $M_{1} H_{1}$ into the parallel to $M_{1} H_{1}$ passing through M_{3}, that is in the perpendicular bisector of the side $B C$. Thus, the maltitudes of Q are transformed into the perpendicular bisectors of Q so that the quadrilaterals Q_{m} and Q_{c} are symmetric with respect to G.

From Theorems 4 and 6 follows:

Theorem 7

The quadrilateral Q_{m} is affine to Q.

Conjecture: Let Q be any convex quadrilateral and Q_{o} be its quadrilateral of orthocentres: Q_{o} has the same area of Q and is affine to Q.

The conjecture arises from the fact that all the proofs that we made by using Cabri indicate that Q and Q_{o} have the same area and moreover that the characteristics of Q and Q_{o} are the same. However, we have been unable to prove the conjecture.

Further reading

Whilst not referred to explicitly in this paper readers may wish to look at these books:
H. S. M. Coxeter and S. L. Greitzer, Geometry revisited, Washington, DC: Amer. Math. Assoc. (1967).
D. Wells, The Penguin dictionary of curious and interesting geometry, Penguin Books (1991).

References

1. C. J. Bradley, Cyclic quadrilaterals, Math. Gaz. 88, (November 2004) pp. 417-431.
2. P. Yiu, Notes on Euclidean Geometry, (1998) http/math. Edu/yiu/EuclideanGeometryNotes.pdf.
3. D. Bennet, Dynamic geometry renews interest in an old problem, in Geometry turned on, MAA Notes 41 (1997) pp. 25-28.
4. J. King, Quadrilaterals formed by perpendicular bisectors, in Geometry turned on, MAA Notes 41 (1997) pp. 29-32.
5. G. Robert, Le triangle. Champ d'investigation et de découvertes, Mathématique et pédagogie, 1993, 91, pp. 27-41; 1993, 92, pp. 17-26.
6. M. De Villiers, Generalizations involving maltitudes, Int. J. Math. Educ. Sci. Technol., 30 (1999) pp. 541-548.
7. R. Honsberger, Episodes in nineteenth and twentieth century Euclidean geometry, Washington, DC: Math. Assoc. Amer. (1995).
8. B. Micale and M. Pennisi, On the altitudes of quadrilaterals, Int. J. Math. Educ. Sci. Technol. 36, no. 1 (2005) pp. 15-24.
9. C. Mammana and B. Micale, Una classificazione affine dei quadrilateri, La Matematica e la sua Didattica (1999) no. 3, pp. 323328.

MARIA FLAVIA MAMMANA and BIAGIO MICALE
Department of Mathematics and Computer Science, University of Catania, Italy

