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Properties of Pythagorean quadrilaterals

MARTIN JOSEFSSON

1.   Introduction
There are many named quadrilaterals.  In our hierarchical classification

in [1, Figure 10] we included 18, and at least 10 more have been named, but
the properties of the latter have only scarcely (or not at all) been studied.
However, only a few of all these quadrilaterals are defined in terms of
properties of the sides alone.  Two well-known classes are the rhombi and
the kites, defined to be quadrilaterals with four equal sides or two pairs of
adjacent equal sides respectively.  The orthodiagonal quadrilaterals are
defined to have perpendicular diagonals, but an equivalent defining
condition is quadrilaterals where the consecutive sides  satisfy

.  Then it is possible to prove that the diagonals are
perpendicular and that no other quadrilaterals have perpendicular diagonals
(see [2, pp. 13-14]).  In the same way tangential quadrilaterals can be
defined to be convex quadrilaterals where .  Starting from
this equation, it is possible to prove that these and only these quadrilaterals
have an incircle (since this equation is a characterisation of tangential
quadrilaterals, see [3, pp.  65-67]).

a, b, c, d
a2 + c2 = b2 + d2

a + c = b + d

In this paper we will study a few properties of convex quadrilaterals
whose sides satisfy one of the quadratic conditions

a2 + b2 = c2 + d2 or  a2 + d2 = b2 + c2. (1)
These were called Pythagorean quadrilaterals in [4] together with the
orthodiagonal quadrilaterals.  The choice of name is hardly surprising.  We
will however exclude the orthodiagonal quadrilaterals from the class of
Pythagorean quadrilaterals since we consider them to have sufficient
differences to be two separate classes.  In the same way trapezia and cyclic
quadrilaterals are different classes although they have almost identical angle
characterisations: two adjacent or two opposite supplementary angles
respectively.  Thus we define a Pythagorean quadrilateral to be a convex
quadrilateral where the consecutive sides satisfy at least one of
the two conditions (1).

a, b, c, d

A few well-known special cases of Pythagorean quadrilaterals are
squares, rectangles, rhombi, parallelograms, and kites.  But also a
quadrilateral where two opposite angles are both right angles is trivially a
Pythagorean quadrilateral according to the Pythagorean theorem (more
about such quadrilaterals in Section 5).  There are however more irregular
quadrilaterals in the class of Pythagorean quadrilaterals as well (see
Figure 1).
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214 THE MATHEMATICAL GAZETTE

2.  Characterisations
The first characterisation of Pythagorean quadrilaterals was proved in

another way in [4].

Theorem 1:  Let  and  be the feet of the perpendiculars from  and
respectively to the diagonal , and let  and  be the feet of the
perpendiculars from  and  respectively to the diagonal  in a convex
quadrilateral .  Then

A′ C′ A C
BD B′ D′

B D AC
ABCD

AB2 + BC2 = CD2 + DA2 ⇔ BA′ = DC′ ⇔ BC′ = DA′
and

AB2 + DA2 = BC2 + CD2 ⇔ AB′ = CD′ ⇔ AD′ = CB′.

D

BA

C

d

a

b

c

A′

C′

FIGURE 1: A Pythagorean quadrilateral

Proof:  We prove the first condition; the second is proved in the same way.
By the Pythagorean theorem we have , ,

 and  (see Figure 1).  Thus
BA′2 + AA′2 = AB2 BC′2 + CC′2 = BC2

DC′2 + CC′2 = CD2 DA′2 + AA′2 = DA2

AB2 + BC2 − CD2 − DA2

= BA′2 − DA′2 + BC′2 − DC′2

= (BA′ + DA′) (BA′ − DA′) + (BC′ + DC′) (BC′ − DC′)
= BD (BC′ + A′C′ − DA′) + BD (BC′ − DA′ − A′C′)
= 2BD (BC′ − DA′) .

Hence

AB2 + BC2 = CD2 + DA2 ⇔ BC′ = DA′ ⇔ BA′ = DC.
where the last equivalence follows by adding or subtracting  to both
sides of  depending on whether  is closest to  or .

A′C′
BC′ = DA′ C′ B D

Based on this theorem we conclude that a Pythagorean quadrilateral can
also be defined as a convex quadrilateral in which the feet of the normals to
a diagonal through two opposite vertices have equal distances to each of the
other two vertices.
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In the rest of this paper we use the notations , ,
 and  for the sides of a convex quadrilateral .  The

diagonals are denoted by  and .  In a Pythagorean
quadrilateral where , the diagonal  that divides the
quadrilateral into two triangles with the sides  and  will be
called the main diagonal (see Figure 2).  Likewise, in a Pythagorean
quadrilateral where , the diagonal  is the main diagonal
that forms triangles having the sides , ,  and , , .  Note that the second
type of Pythagorean quadrilateral becomes the first on relabelling sides and
vertices.  Thus in the remainder of this paper we only consider the first type,
but be aware that all theorems proved can be reinterpreted under the other
possible labelling.

a = AB b = BC
c = CD d = DA ABCD

p = AC q = BD
a2 + b2 = c2 + d2 p

a, b, p c, d, p

a2 + d2 = b2 + c2 q
a d q b c q

Theorem 2:  Let  and  be the heights in the triangles  and
respectively to the diagonal  in a convex quadrilateral  with
consecutive sides , , ,  and no right angles.  It is a Pythagorean
quadrilateral with main diagonal  if, and only if,

hB hD BAC DAC
AC ABCD

a b c d
p

tan B
hB

=
tan D

hD
.

D

BA

C

d

a

b

c

p hB

hD

FIGURE 2: The heights to a main diagonal

Proof:  Expressing twice the area of triangles  and  in two different
ways respectively yields  and  (see
Figure 2).  Thus

BAC DAC
ab sin B = phB cd sin D = phD

ab
cd

=
hB sin D
hD sin B

(2)

which is valid in all convex quadrilaterals.  Using the Law of Cosines in
triangles  and , we have that  is equivalent toBAC DAC a2 + b2 = c2 + d2

p2 + 2ab cos B = p2 + 2cd cos D ⇔
ab
cd

=
cos D
cos B

. (3)

Combining (2) and (3) yields

hB sin D
hD sin B

=
cos D
cos B
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216 THE MATHEMATICAL GAZETTE

which is equivalent to the stated condition provided that  and .B ≠ π
2 D ≠ π

2

An important property of Pythagorean quadrilaterals can be deduced
from (3).

Theorem 3:  The two angles opposite the main diagonal in a Pythagorean
quadrilateral are always of the same type, i.e. they are both either acute, or
right, or obtuse.

Proof:  The cosine function is positive for acute angles, zero for right angles,
and negative for obtuse angles.  The quotient  is always positive, so in the
quotient  on the right-hand side of (3), either both cosines must be
positive or negative.  Hence the opposite angles are either both acute or both
obtuse.  From the first part of (3) , and we have that
is a right angle if, and only if,  is a right angle.

ab
cd

cos D
cos B

ab cos B = cd cos D B
D

The third and last characterisation is about the measure of the angle
between the diagonals in terms of the diagonal parts.

Theorem 4:  In a convex quadrilateral with consecutive sides  and
where no diagonal is bisected by the other, let the diagonals divide each
other in parts ,  and , .  It is a Pythagorean quadrilateral with main
diagonal  if, and only if, the acute angle  between the diagonals is given
by

a, b, c, d

w x y z
p θ

cos θ = | y − z
w − x | .

w

x

y

z

a

θ
b

c

d

FIGURE 3: The diagonal parts

Proof:  Using the Law of Cosines in the four non-overlapping subtriangles
created by the diagonals (see Figure 3) yields that  is
equivalent to

a2 + b2 = c2 + d2

w2 + y2 − 2wy cos θ + y2 + x2 + 2xy cos θ
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PROPERTIES OF PYTHAGOREAN QUADRILATERALS 217

= x2 + z2 − 2xz cos θ + w2 + z2 + 2wz cos θ

⇔  y2 − z2 = cos θ (wy − xy − xz + wz)
⇔  (y + z) (y − z) = cos θ (w − x) (y + z) . (4)

This is equivalent to the formula in the theorem, where we put an absolute
value to cover all cases (the other angle between the diagonals satisfies

).cos (π − θ) = − cos θ

Corollary:  One diagonal bisects the other diagonal in a Pythagorean
quadrilateral if, and only if, it is a parallelogram or a kite.

Proof:  From (4) we get that  if, and only if,  or .  The
first possibility gives a parallelogram and the second a kite.  The converses
are well-known properties of these quadrilaterals.

y = z w = x θ = π
2

3.   Area
The area of a convex quadrilateral can be calculated given the length of

the four sides  and the two diagonals .  The formula, which was
originally derived independently by the two German mathematicians von
Staudt and Bretschneider in 1842, is

a, b, c, d p, q

K = 1
4 4p2q2 − (a2 − b2 + c2 − d2)2. (5)

Two modern proofs were given in [5].  This formula can be simplified in a
Pythagorean quadrilateral.

Theorem 5:  A Pythagorean quadrilateral with consecutive sides
and diagonals ,  has the area

a, b, c, d
p q

K = 1
2 p2q2 − (a2 − d2)2 = 1

2 p2q2 − (c2 − b2)2

when  is the main diagonal.p

Proof:  Using the condition , or rather its equivalent
version , in (5) directly yields the two formulas after
factoring out a 4 under the square root.

a2 + b2 = c2 + d2

a2 − d2 = c2 − b2

The next theorem gives area formulas in terms of two adjacent sides,
their intermediate angle, and its opposite angle.

Theorem 6:  A Pythagorean quadrilateral  with consecutive sides , ,
,  and no right angles has the area

ABCD a b
c d

K =
ab sin (B + D)

2 cos D
=

cd sin (B + D)
2 cos B

when  is the main diagonal.p
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Proof:  As in the proof of Theorem 2,  is equivalent toa2 + b2 = c2 + d2

ab
cd

=
cos D
cos B

. (6)

By dividing a quadrilateral into two triangles using a diagonal, we have that
the area of any convex quadrilateral satisfies .
Hence

2K = ab sin B + cd sin D

2K = cd
cos D
cos B

 sin B + cd sin D = cd (sin B cos D + cos B sin D
cos B ) .

The addition formula for sine now yields the second formula and the first
follows directly by using (6) again.  The exception for right angles is due to
the cosines in the denominators as well as the sines in the numerators, which
in that case are both zero.

There is another trigonometric area formula which does not have any
angle restrictions.

Theorem 7:  A Pythagorean quadrilateral  with consecutive sides , ,
,  and main diagonal  has area

ABCD a b
c d p

K =
1
2

(ab + cd)2 − 4abcd cos2 (A + C
2 ).

Proof:  Using the identity

(a2 − b2 + c2 − d2)2
− (a2 + b2 − c2 − d2)2

= −4(a2 − d2)(b2 − c2)
in (5), we get that the area of any convex quadrilateral is given by

K = 1
4 4p2q2 − (a2 + b2 − c2 − d2)2 + 4 (a2 − d2) (b2 − c2). (7)

Bretschneider's generalisation of Ptolemy's theorem (discovered in 1842 and
rediscovered in 2001, see the proof in [6]) states that in all convex
quadrilaterals

p2q2 = a2c2 + b2d2 − 2abcd cos (A + C) . (8)
Eliminating the product of the diagonals and inserting
in (7) yields

a2 + b2 = c2 + d2

K = 1
4 4(a2c2 + b2d2 − 2abcd cos(A + C)) + 4(a2 − d2)(b2 − c2).

= 1
2 a2b2 + c2d2 − 2abcd cos(A + C)

= 1
2 (ab + cd)2 − 2abcd (1 + cos(A + C)).

The last step is to use the half-angle formula for cosines.

The area of a convex quadrilateral with diagonals  and  is (see [7])p q

K = 1
2pq sin θ, (9)
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PROPERTIES OF PYTHAGOREAN QUADRILATERALS 219

where  is the angle between the diagonals.  Thus the area is half the
product of the diagonals if, and only if, the diagonals are perpendicular.
Comparing formula (9) with the ones in Theorem 5, we conclude that a
Pythagorean quadrilateral is orthodiagonal if, and only if, at least one pair
of adjacent sides are equal.  But then the other pair is also equal according to
the defining conditions (1), so a Pythagorean quadrilateral is orthodiagonal
if, and only if, it is a kite.

θ

In [2, p. 19] we proved that the bimedians (the two line segments
connecting the midpoints of opposite sides) are equal if, and only if, the
diagonals are perpendicular.  Hence a Pythagorean quadrilateral has equal
bimedians if, and only if, it is a kite.

4.   Incircle and excircle
An incircle is a circle inside the quadrilateral that is tangent to all four

sides, and an excircle is a circle outside the quadrilateral that is tangent to
the extensions of all four sides.  Quadrilaterals having an incircle or an
excircle are called tangential and extangential respectively.  Some similar
features of these quadrilaterals were discussed in [8].

The two defining conditions (1) for a Pythagorean quadrilateral can be
merged into one condition as

|a2 − c2| = |b2 − d2| .
Factorising this yields

(a + c) |a − c| = (b + d) |b − d| .
It is well-known that a convex quadrilateral has an incircle if, and only if, its
sides satisfy  according to Pitot's theorem.  In [8, p. 64], we
noted that a convex quadrilateral has an excircle if, and only if,

.  Thus we conclude that a Pythagorean quadrilateral has
an incircle if, and only if, it has an excircle.  Combining the incircle and
excircle conditions, we get that the sides satisfy  and  or
and .  In both cases the quadrilateral is a kite.  Hence a Pythagorean
quadrilateral has an incircle if, and only if, it is a kite, and the same is true
for an excircle.  Together with the defining conditions of a kite, this means
that the kites (including their special cases rhombi and squares) are the only
quadrilaterals that are both tangential and extangential.

a + c = b + d

|a − c| = |b − d|

a = b c = d a = d
b = c

We summarise the conclusions from this and the previous section
regarding kites in the following theorem.

Theorem 8:  A Pythagorean quadrilateral has any of
(i) two adjacent equal sides
(ii) perpendicular diagonals
(iii) an area that is half the product of the diagonals
(iv) equal bimedians
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220 THE MATHEMATICAL GAZETTE

(v) an incircle
(vi) an excircle

if, and only if, it is a kite.

5.   Circumcircle
We define a right Pythagorean quadrilateral to be a Pythagorean

quadrilateral where both angles opposite the main diagonal are right angles,
see Figure 4.  (In [9, pp. 154-155] Michael de Villiers calls a quadrilateral
with two opposite right angles a ‘right quadrilateral’.) These quadrilaterals
appear quite often in problem solving.  One example: In a triangle , the
internal and external angle bisector to each vertex angle are perpendicular.
Since the incentre  and the three excentres ,  and  lie on the
intersections of internal or external angle bisectors, there are three right
Pythagorean quadrilaterals associated with the four tritangent circles to
every triangle.  These are the quadrilaterals ,  and .

ABC

I JA JB JC

AIBJC BICJA CIAJB

We have the following necessary and sufficient condition.

Theorem 9:  A Pythagorean quadrilateral is cyclic if, and only if, it is a right
Pythagorean quadrilateral.

Proof:  It is well known that a convex quadrilateral is cyclic, that is, it has a
circumcircle, if, and only if, it has two opposite supplementary angles.  In a
right Pythagorean quadrilateral two opposite angles are both right angles
and thus supplementary, so it is cyclic.  Conversely, in a cyclic Pythagorean
quadrilateral there are a pair of opposite angles of the same sort (according
to Theorem 3) that are supplementary, so they must both be right angles
since they can neither be both acute nor both obtuse.

C

A

B

D

b

c

d

a

FIGURE 4: A right Pythagorean quadrilateral

Calculating the area of a right Pythagorean quadrilateral is an easy task
since it can be divided by a diagonal into two right triangles.   A right
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Pythagorean quadrilateral  with consecutive sides , , ,  and where
 and  are right angles has the area

ABCD a b c d
B D

K =
ab + cd

2
.

This formula is also a corollary to Theorem 7, where the cosine term is zero
since .A + C = π

The main diagonal of a right Pythagorean quadrilateral is a diameter of
the circumcircle, see Figure 4.  Thus using the Pythagorean theorem directly
yields formulas for the circumradius.  A right Pythagorean quadrilateral

 with consecutive sides , , ,  and where  and  are right angles
has the circumradius
ABCD a b c d B D

R = 1
2 a2 + b2 = 1

2 c2 + d2.
The length of the second diagonal can then be calculated using Ptolemy's
theorem.

6.   Comparison with orthodiagonal quadrilaterals
Although we defined orthodiagonal and Pythagorean quadrilaterals to

be separate classes of quadrilaterals due to their differences, they have in
fact a few similarities, and these become more prominent in the special
cases when they have an incircle or a circumcircle.  We conclude this paper
by making comparisons on their similar properties.

First of all, the characteristic properties of the sides are strikingly
similar.  In an orthodiagonal quadrilateral, we have ,
whereas in a Pythagorean quadrilateral it holds that  (or

 ).

a2 + c2 = b2 + d2

a2 + b2 = c2 + d2

a2 + d2 = b2 + c2

When it comes to the area, there is in fact a formula very similar to the
one in Theorem 7 for orthodiagonal quadrilaterals.

Theorem 10:  An orthodiagonal quadrilateral  with consecutive sides
, , ,  has area

ABCD
a b c d

K =
1
2

(ac + bd)2 − 4abcd cos2 (A + C
2 ).

Proof:  By adding and subtracting  to the right hand side of (8), we
have that in a convex quadrilateral

2abcd

p2q2 = (ac + bd)2 − 2abcd (1 + cos (A + C))

= (ac + bd)2 − 4abcd cos2 (A + C
2 ) .

Now the formula follows at once, since an orthodiagonal quadrilateral has
the area .K = 1

2pq

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/mag.2016.57
Downloaded from https://www.cambridge.org/core. Stellenbosch University, on 03 Sep 2020 at 13:56:27, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/mag.2016.57
https://www.cambridge.org/core


222 THE MATHEMATICAL GAZETTE

We have previously proved in Theorem 8(v) that a Pythagorean
quadrilateral has an incircle if, and only if, it is a kite.  There is a similar
condition for an orthodiagonal quadrilateral.

Theorem 11:  An orthodiagonal quadrilateral has an incircle if, and only if, it
is a kite.

Proof:  We solve the two simultaneous equations  and
 that characterise a convex quadrilateral to be orthodiagonal and

tangential respectively.  Rewriting them as  and
 we have the two cases that either  and thus , or

, and then the first equation is simplified to .
Combining this with , the solution in the second case is

 and .  In either case the quadrilateral is a kite.

a2 + c2 = b2 + d2

a + c = b + d
(a + b)(a − b) = (d + c)(d − c)

a − b = d − c a = b d = c
a ≠ b a + b = d + c

a − b = d − c
a = d b = c

In the previous section we stated formulas for the area  and
circumradius  of cyclic (i.e. right) Pythagorean quadrilaterals.  For the
cyclic orthodiagonal quadrilateral there are the similar formulas

K
R

K =
ac + bd

2
and

R = 1
2 a2 + c2 = 1

2 b2 + d2.
The area formula follows directly when inserting  in
Theorem 10.  Another short proof is by inserting Ptolemy's theorem

 (valid in cyclic quadrilaterals) in the formula  for
the area of an orthodiagonal quadrilateral.

A + C = π

pq = ac + bd K = 1
2pq

To derive the formulas for the circumradius, first note that in all
orthodiagonal quadrilaterals, we have with the notation in Figure 5 that

a2 + c2 = w2 + x2 + y2 + z2 = b2 + d2

according to the Pythagorean theorem applied four times, where , , ,
are the diagonal parts.  Since

w x y z

u = |y + z
2

− z| =
|y − z|

2
,

then by the Pythagorean theorem in triangle  we getBOQ

(w + x
2 )2

+ (y − z
2 )2

= R2.

Whence

4R2 = w2 + 2wx + x2 + y2 − 2yz + z2 = a2 + c2

where  according to the intersecting chords theorem, completing
the derivation.

wx = yz
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R

z y

x

O

D

B

A C

a b

cd

w

Q u

P

FIGURE 5: A cyclic orthodiagonal quadrilateral

It was claimed in [10, p. 26] that , where  is
the diameter of the circle, is a new result from 2004.  This is however not
true.  It is in fact Theorem 11 from Archimedes' Book of Lemmas, which
states that if two chords  and  of a circle intersect at right angles at ,
then

w2 + x2 + y2 + z2 = �2 �

AB CD P

AP2 + BP2 + CP2 + DP2 = �2.
A different derivation of this equality from the one we gave can be found in
[11, pp. 104-105].
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