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Every year the SA Mathematics Olympiad produces a valuable resource of new, innovative

mathematical problems, and manages to stimulate interest in problem solving among

learners, teachers and parents. Apart from being an essential resource for preparation for

SAMO, a number of problems can also be used as further investigations by teachers. Past

papers with solutions from 1997 to 2006 are freely available at

http://ridcully.up.ac.za/samo/questions.html

The Senior Second Round of the 2006 Harmony SA Mathematics Olympiad

contained an interesting problem in Question 20.  For example, consider Figure 1. If AE =

3, DE = 5, and CE = 7, then BF equals

(a) 3.6 (b) 4 (c) 4.2 (d) 4.5 (e) 5

Figure 1

Before reading further the reader is encouraged to perhaps stop and first try to solve this

problem before reading further.
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The following solution is provided: Answer C. By looking at the angles we see that

triangles AED and BFA are similar, as are triangles CFB and DEC.

Therefore
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, so 

€ 

CF

AF
=

3

7
. But CF + AF = CE + AE = 10, so

CF = 3 and AF = 7. Therefore BF = 

€ 

BF

AF
× AF =

3

5
× 7= 4.2.

Problem 20 is intended to be the toughest problem on the Second Round, but should

also not be too hard. Problem 20 involves similarity, which is usually fairly tough for

learners. It is therefore perhaps not surprising that only 22% got it right, and turned out to

be one of the toughest problems in the Second Round. So for once, the Senior SAMO

committee, which includes myself, got the level more or less right!

However, the problem and solution masks an interesting underlying theorem. The

observant reader may have noticed that CF = 3 = AE and AF = 7 = CE, and perhaps

wondered whether this was mere coincidence of the choice of numbers. Surprisingly

though, this would always be the case for any quadrilateral ABCD with opposite right

angles at A and C!

More precisely, the underlying theorem can be formulated as follows: Given any

quadrilateral ABCD with right angles at A and C, and the perpendiculars from B and D to

the diagonal AC meet it at F and E respectively, then AE = CF (and CE = AF). The result

follows directly from generalizing the above solution by letting, say, AE = p, DE = q, and

CE = r , and is left as an exercise for the reader.

Figure 2
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But there is even more intrigue to the underlying theorem! Since there are right

angles at F and E, we can draw two circles centred at B and D respectively as shown in

Figure 2. Assume the two circles are of different size with circle B smaller than circle D.

Then draw tangents from A and C to circles B and D respectively. If 

€ 

∠BAC= x , then

angles GAB, DAC and DAH are respectively x, 

€ 

90° − x  and 

€ 

90° − x , and it follows that

GAH is a straight line. Similarly, GCI is a straight line. So now we have the following

surprising result which does not appear to be well-known (see Note 4): Given any triangle

GAC, then if F and E are the respective tangent points of the triangle’s incircle and excircle

to AC, then AE = CF (and CE = AF).  Similarly, the result follows for the other two

excircles.

Figure 3

Viewed this way, this result can also be seen as just a special case of a beautiful 3D

result discovered by Germinal Dandelin (1794 – 1847). His theorem states that if we

inscribe two spheres into a circular cone to respectively touch the slicing plane on both

sides, then not only is the intersection of the plane with the cone an ellipse (already known
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to the ancient Greeks), but the two spheres respectively touch the plane at the focal points

of the ellipse (see Figure 3). Dandelin’s theorem is surprisingly easy to prove.

Proof: Let the points where the top and bottom spheres respectively touch the

slicing plane be F and E. Further let P be an intersection of the plane with an edge of the

cone,

€ 

′ F  and 

€ 

′ E  be the points where the line PG respectively touch the upper and lower

spheres. Then since P, F and 

€ 

′ F  lie on a plane, we have that PF = P

€ 

′ F  (tangents from a

point to a circle are equal). Similarly, PE = P

€ 

′ E . Therefore, PF + PE = P

€ 

′ F  + P

€ 

′ E  = 

€ 

′ F ′ E ,

which is constant. Therefore, by definition of an ellipse, the intersection of the plane with

the cone is an ellipse, and its focal points are E and F.

Figure 2 is clearly obtained when the cone is viewed directly from the side, where A

and C are the points where the main axis of the ellipse intersects the sides of the cone. The

result that AE = CF (and CE = AF) then follows immediately from the symmetry of the

ellipse.

This is therefore another good illustrative example, as will be discussed further in

De Villiers (In press), of where a 2D result can be proved much more easily by considering

it as a special case of a 3D result!

Notes

1) A quadrilateral with a pair of opposite right angles is called a right quadrilateral in

De Villiers (1996), and apart from being cyclic, also has the interesting property

that if the right angles are at A and C, then 

€ 

AB2 + AD2 = CB2 + CD2 .

2) SAMO is open to all high school learners and information about participation is

available at http://ridcully.up.ac.za/samo/ or from: The Secretary, SAMO, Private

Bag X173 , Pretoria 0001. Tel/Fax: 012-3201950; E-mail: ellie@samf.ac.za

3) Dynamic Geometry (Sketchpad 4) sketches in zipped format (Winzip) of the results

discussed here can be downloaded directly from:

http://mysite.mweb.co.za/residents/profmd/samodandelin.zip

(If not in possession of a copy of Sketchpad 4, these sketches can be viewed with a

free demo version of Sketchpad 4 that can be downloaded from:

http://www.keypress.com/sketchpad/sketchdemo.html)

4) Prof. Nic Heideman from the Mathematics Department at UCT, and Chair of

SAMO, assures me that the result mentioned in Figure 2, and many similar ones, are

quite well known in the International Mathematical Olympiad (IMO) training
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context of the South African team.

These problems are all related to what has for about a dozen years now been

referred to as the “Ravi substitution”. Ravi used it with devastating effect, in order

to simplify an inequality, in a top competition in the early 90's and he was one of

the founders of the Canadian problem journal Mathematical Mayhem.

s - c

s - a

s - g
s - g

K

J

M

L

EF

D

B

G

A

C

H

I

Figure 4

For example, consider Figure 4, where J, on GA, and K, on GC, are the points of

contact with the inscribed circle B, and let L, on AH, and M, on CI, be the points of

contact with the escribed circle D. Let 2s = g + a + c be the perimeter of triangle

GAC, where GC = a, etc. Then by Ravi’s substitution (left to the reader to verify)

GJ = GK = s - g, AJ = AF = s – a, and CF = CK = s – c. Note that GL = GA + AL =

GA + AE and GM = GC + CM = GC + CE. Therefore, GL + GM = GA + AE + GC +

CE = 2s. But GL = GM, hence GL = GM = s. Since AF = s - a, AE = AL = s - (s - g)

- (s - a) = (a + g) - s = (2s – c) - s = s - c = CF.
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