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A dual, and generalisations, of a Sharp result
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In the Mathematical Digest, No. 117, Oct 1999, solutions to the following Sharp problem

were given by several learners on p. 17:

In triangle ABC point P lies on AB. Six circular arcs are draw:

With centre B and radius BP, cutting BC in Q,

With centre C and radius CQ, cutting CA in R,

with centre A and radius AR, cutting AB in S,

with centre B and radius BS, cutting BC in T,

with centre C and radius CT, cutting CA in U,

with centre A and radius AU.

Prove that this last arc cuts AB in P.

However, more can be said about this configuration, namely, that the points P, Q, R, S, T

and U all lie on a circle, i.e. the (crossed) hexagon PQRSTU is cylic. This is easy to

prove as follows: Since PQB is an isosceles triangle with BP = BQ, the perpendicular

bisector of PQ coincides with the angle bisector of angle B. Similarly, the perpendicular

bisectors of QR, RS, etc. coincide with the angle bisectors of angles C, A, etc. Since the

angle bisectors of any triangle are concurrent, it follows that the perpendicular bisectors
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of the sides of PQRSTU are also concurrent, and therefore it is cyclic. (Since a

perpendicular bisector is the locus of all points equidistant from two endpoints of a

segment and the perpendicular bisectors of all six sides are concurrent, this point of

concurrency (the incentre) is equidistant from all six vertices).

The result is also true if P lies on AB extended either way and one works with

directed line segments. Furthermore, as pointed out in De Villiers (1996: 197-198; 202)

there is an interesting dual to this result involving angles rather than sides. Whereas with

the first result we start with an arbitrary point P on AB, we now start with an arbitrary ray

dividing angle A. For example, construct any angle divider AP
→

 of ∠A  of a triangle

ABC, angle divider BP
→

 of ∠B  so that ∠PBA = ∠PAB , angle divider CQ
→

 of ∠C  so

that ∠QCB = ∠PBC  and Q ∈ BP
→

, angle divider AR
→

 of ∠A  so that ∠RAC = ∠QCA

and R ∈CQ
→

, angle divider BS
→

 of ∠B  so that ∠SBA = ∠RAB  and S ∈AR
→

 and angle

divider CT
→

 of ∠C  so that ∠TCB = ∠SBC  and T ∈BS
→

. If U is the intersection of CT
→

and AP
→

, then ∠UCA = ∠UAC  and PQRSTU is a circum hexagon (a hexagon

circumscribed around a circle - see below).
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The proof is similar to the original and is left as an exercise to the reader. As pointed out

in De Villiers (1996: 58-61; 196) both results can be respectively generalised to circum
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and cyclic polygons. An even further generalisation which does not retain the cyclic or

circum property is also discussed.
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XXXXXXXX

The Sharp problem mentioned above was poetically described as follows by David Gale

in a recent issue of the Mathematical Intelligencer:

In a triangle called ABC

Pick a point on AB, call it P.

Pick a Q on BC,

Where BQ is BP.

Ah the joys of pure geo-me-tree!

On CA pick an R, oh please do,

Where CR is exactly CQ,

And now pick an S

On AB, more or less,

So that “AS is AR” is true.

On BC the next letter is T,

Where BT is BS, don’t you see.

On CA pick a U,

And you’ll know what to do,

Next what’s this? We’ve arrived back at P!

Now some proofs were soon found close at hand,

But it did’nt turn out quite as planned,

For though not very large

(They would fit in the margin)

regrettably, none of them scanned.


