
Forum Geometricorum
Volume 12 (2012) 63–77.

FORUM GEOM

ISSN 1534-1178

Similar Metric Characterizations of Tangential
and Extangential Quadrilaterals

Martin Josefsson

Abstract. We prove five necessary and sufficient conditions for a convex quadri-
lateral to have an excircle and compare them to similar conditions for a quadri-
lateral to have an incircle.

1. Introduction

There are a lot of more or less well known characterizations of tangential quadri-
laterals,1 that is, convex quadrilaterals with an incircle. This circle is tangent at the
inside of the quadrilateral to all four sides. Many of these necessary and sufficient
conditions were either proved or reviewed in [8]. In this paper we shall see that
there are a few very similar looking characterizations for a convex quadrilateral to
have an excircle. This is a circle that is tangent at the outside of the quadrilateral
to the extensions of all four sides. Such a quadrilateral is called an extangential
quadrilateral in [13, p.44],2 see Figure 1.
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Figure 1. An extangential quadrilateral and its excircle

We start by reviewing and commenting on the known characterizations of extan-
gential quadrilaterals and the similar ones for tangential quadrilaterals. It is well
known that a convex quadrilateral is tangential if and only if the four internal angle

Publication Date: April 4, 2012. Communicating Editor: Paul Yiu.
1Another common name for these is circumscribed quadrilateral.
2Alexander Bogomolny calls them exscriptible quadrilateral at [2].
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bisectors to the vertex angles are concurrent. Their common point is the incen-
ter, that is, the center of the incircle. A convex quadrilateral is extangential if and
only if six angles bisectors are concurrent, which are the internal angle bisectors
at two opposite vertex angles, the external angle bisectors at the other two vertex
angles, and the external angle bisectors at the angles formed where the extensions
of opposite sides intersect. Their common point is the excenter (E in Figure 1).
The most well known and useful characterization of tangential quadrilaterals is

the Pitot theorem, that a convex quadrilateral with sides a, b, c, d has an incircle if
and only if opposite sides have equal sums,

a + c = b + d.

For the existence of an excircle, the similar characterization states that the adjacent
sides shall have equal sums. This is possible in two different ways. There can
only be one excircle to a quadrilateral, and the characterization depends on which
pair of opposite vertices the excircle is outside of. It is easy to realize that it must
be outside the vertex (of the two considered) with the biggest angle.3 A convex
quadrilateral ABCD has an excircle outside one of the vertices A or C if and only
if

a + b = c + d (1)
according to [2] and [10, p.69]. This was proved by the Swiss mathematician Jakob
Steiner (1796–1863) in 1846 (see [3, p.318]). By symmetry (b ↔ d), there is an
excircle outside one of the vertices B or D if and only if

a + d = b + c. (2)
From (1) and (2), we have that a convex quadrilateral with sides a, b, c, d has an
excircle if and only if

|a− c| = |b− d|

which resembles the Pitot theorem. There is however one exception to these char-
acterizations. The existence of an excircle is dependent on the fact that the exten-
sions of opposite sides in the quadrilateral intersect, otherwise the circle can never
be tangent to all four extensions. Therefore there is no excircle to either of a trape-
zoid, a parallelogram, a rhombus, a rectangle or a square even though (1) or (2)
is satisfied in many of them, since they have at least one pair of opposite parallel
sides.4
In [8, p.66] we reviewed two characterizations of tangential quadrilaterals re-

garding the extensions of the four sides. Let us take another look at them here. If
ABCD is a convex quadrilateral where opposite sides AB and CD intersect at E,
and the sides AD andBC intersect at F (see Figure 2), then ABCD is a tangential
quadrilateral if and only if either of the following conditions holds:

AE + CF = AF + CE, (3)
BE + BF = DE + DF. (4)

3Otherwise the circle can never be tangent to all four extensions.
4The last four of these quadrilaterals can be considered to be extangential quadrilaterals with

infinite exradius, see Theorem 8.
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Figure 2. The extensions of the sides

The history of these conditions are discussed in [14] together with the correspond-
ing conditions for extangential quadrilaterals. In our notations, ABCD has an
excircle outside one of the vertices A or C if and only if either of the following
conditions holds:

AE + CE = AF + CF, (5)
BE + DE = BF + DF. (6)

These conditions were stated somewhat differently in [14] with other notations.
Also, there it was not stated that the excircle can be outside A instead of C , but
that is simply a matter of making the change A↔ C in (5) to see that the condition
is unchanged. How about an excircle outside of B or D? By making the changes
A ↔ D and B ↔ C (to preserve that AB and CD intersect at E) we find that
the conditions (5) and (6) are still the same. According to [14], conditions (3) and
(5) were proved by Jakob Steiner in 1846. In 1973, Howard Grossman (see [5])
contributed with the two additional conditions (4) and (6).
From a different point of view, (3) and (5) can be considered to be necessary and

sufficient conditions for when a concave quadrilateral AECF has an “incircle” (a
circle tangent to two adjacent sides and the extensions of the other two) or an
excircle respectively. Then (4) and (6) are necessary and sufficient conditions for a
complex quadrilateral BEDF to have an excircle.5
Another related theorem is due to the Australian mathematician M. L. Urquhart

(1902–1966). He considered it to be “the most elementary theorem of Euclidean
geometry”. It was originally stated using only four intersecting lines. We restate it
in the framework of a convex quadrilateral ABCD, where opposite sides intersect
atE and F , see Figure 2. Urquhart’s theorem states that ifAB+BC = AD+DC ,
then AE + EC = AF + FC . In 1976 Dan Pedoe wrote about this theorem (see
[12]), where he concluded that the proof by purely geometrical methods is not el-
ementary and that he had been trying to find such a proof that did not involve a
circle (the excircle to the quadrilateral). Later that year, Dan Sokolowsky took up

5Equations (4) and (6) can then be merged into one as |BE −DF | = |BF −DE|.
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that challenge and gave an elementary “no-circle” proof in [15]. In 2006, Mowaf-
faq Hajja gave a simple trigonometric proof (see [6]) that the two equations in
Urquhart’s theorem are equivalent. According to (1) and (5), they are both charac-
terizations of an extangential quadrilateral ABCD.

2. Characterizations with subtriangle circumradii

In [9, pp.23–24] we proved that if the diagonals in a convex quadrilateral ABCD
intersect at P , then it has an incircle if and only if

R1 + R3 = R2 + R4

where R1, R2, R3 and R4 are the circumradii in the triangles ABP , BCP , CDP
and DAP respectively, see Figure 3.
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Figure 3. The subtriangle circumcircles

There are the following similar conditions for a quadrilateral to have an excircle.

Theorem 1. Let R1, R2, R3, R4 be the circumradii in the triangles ABP , BCP ,
CDP , DAP respectively in a convex quadrilateral ABCD where the diagonals
intersect at P . It has an excircle outside one of the vertices A or C if and only if

R1 + R2 = R3 + R4

and an excircle outside one of the vertices B or D if and only if

R1 + R4 = R2 + R3.

Proof. According to the extended law of sines, the sides satisfies a = 2R1 sin θ,
b = 2R2 sin θ, c = 2R3 sin θ and d = 2R4 sin θ, where θ is the angle between the
diagonals,6 see Figure 3. Thus

a + b− c− d = 2 sin θ(R1 + R2 −R3 −R4)

6We used that sin (π − θ) = sin θ to get two of the formulas.
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and
a + d− b− c = 2 sin θ(R1 + R4 −R2 −R3).

From these we directly get that

a + b = c + d ⇔ R1 + R2 = R3 + R4

and
a + d = b + c ⇔ R1 + R4 = R2 + R3

since sin θ $= 0. By (1) and (2) the conclusions follow. !

3. Characterizations concerning the diagonal parts

In [7] Larry Hoehn made a few calculations with the law of cosines to prove that
in a convex quadrilateral ABCD with sides a, b, c, d,

efgh(a+c+b+d)(a+c−b−d) = (agh+cef+beh+dfg)(agh+cef−beh−dfg)

where e, f, g, h are the distances from the vertices A,B,C,D respectively to the
diagonal intersection (see Figure 4). Using the Pitot theorem a+ c = b+ d, we get
that the quadrilateral is tangential if and only if

agh + cef = beh + dfg. (7)

Now we shall prove that there are similar characterizations for the quadrilateral to
have an excircle.

Theorem 2. Let e, f, g, h be the distances from the verticesA,B,C,D respectively
to the diagonal intersection in a convex quadrilateral ABCD with sides a, b, c, d.
It has an excircle outside one of the vertices A or C if and only if

agh + beh = cef + dfg

and an excircle outside one of the vertices B or D if and only if

agh + dfg = beh + cef.

Proof. In [7] Hoehn proved that in a convex quadrilateral,

efgh
(

a2 + c2 − b2 − d2
)

= a2g2h2 + c2e2f2 − b2e2h2 − d2f2g2.

Now adding efgh(−2ac + 2bd) to both sides, this is equivalent to

efgh
(

(a− c)2 − (b− d)2
)

= (agh− cef)2 − (beh− dfg)2

which is factored as

efgh(a−c+b−d)(a−c−b+d) = (agh−cef+beh−dfg)(agh−cef−beh+dfg).

The left hand side is zero if and only if a+ b = c+d or a+d = b+ c and the right
hand side is zero if and only if agh+ beh = cef + dfg or agh+ dfg = beh+ cef .
To show that the first equality from both sides are connected and that the second

equality from both sides are also connected, we study a special case. In a kite
where a = d and b = c and also f = h, the two equalities a + b = c + d and
agh + beh = cef + dfg are satisfied, but none of the others. This proves that they
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are connected. In the same way, using another kite, the other two are connected
and we have that

a + b = c + d ⇔ agh + beh = cef + dfg

and
a + d = b + c ⇔ agh + dfg = beh + cef.

This completes the proof according to (1) and (2). !

Remark. The characterization (7) had been proved at least three different times be-
fore Hoehn did it. It appears as part of a proof of an inverse inradii characterization
of tangential quadrilaterals in [16] and [17]. It was also proved in [11, Proposition
2 (e)]. All of the four known proofs used different notations.

4. Characterizations with subtriangle altitudes

In 2009, Nicuşor Minculete gave two different proofs (see [11]) that a convex
quadrilateral ABCD has an incircle if and only if the altitudes h1, h2, h3, h4 from
the diagonal intersection P to the sides AB, BC , CD, DA in triangles ABP ,
BCP , CDP ,DAP respectively satisfy

1

h1

+
1

h3

=
1

h2

+
1

h4

. (8)

This characterization of tangential quadrilaterals had been proved as early as 1995
in Russian by Vasilyev and Senderov [16]. Another Russian proof was given in
2004 by Zaslavsky [18]. To prove that (8) holds in a tangential quadrilateral (i.e.
not the converse) was a problem at the 2009 mathematics Olympiad in Germany
[1]. All of these but the 1995 proof used other notations.
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Figure 4. The subtriangle altitudes h1, h2, h3 and h4

Here we will give a short fifth proof that (8) is a necessary and sufficient con-
dition for a convex quadrilateral to have an incircle using the characterization (7).
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By expressing twice the area of ABP , BCP , CDP , DAP in two different ways,
we have the equalities (see Figure 4)

ah1 = ef sin θ,

bh2 = fg sin θ,

ch3 = gh sin θ,

dh4 = he sin θ (9)

where θ is the angle between the diagonals.7 Hence
(

1

h1

+
1

h3

−
1

h2

−
1

h4

)

sin θ =
a

ef
+

c

gh
−

b

fg
−

d

he
=

agh + cef − beh− dfg

efgh
.

Since sin θ $= 0, we have that

1

h1

+
1

h3

=
1

h2

+
1

h4

⇔ agh + cef = beh + dfg

which by (7) proves that (8) is a characterization of tangential quadrilaterals.
Now we prove the similar characterizations of extangential quadrilaterals.

Theorem 3. Let h1, h2, h3, h4 be the altitudes from the diagonal intersection P
to the sides AB, BC , CD, DA in the triangles ABP , BCP , CDP , DAP re-
spectively in a convex quadrilateral ABCD. It has an excircle outside one of the
vertices A or C if and only if

1

h1

+
1

h2

=
1

h3

+
1

h4

and an excircle outside one of the vertices B or D if and only if

1

h1

+
1

h4

=
1

h2

+
1

h3

.

Proof. The four equations (9) yields
(

1

h1

+
1

h2

−
1

h3

−
1

h4

)

sin θ =
a

ef
+

b

fg
−

c

gh
−

d

he
=

agh + beh− cef − dfg

efgh
.

Since sin θ $= 0, we have that

1

h1

+
1

h2

=
1

h3

+
1

h4

⇔ agh + beh = cef + dfg

which by Theorem 2 proves the first condition in the theorem. The second is proved
in the same way. !

7Here we have used that sin (π − θ) = sin θ in two of the equalities.
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5. Iosifescu’s characterization for excircles

According to [11, p.113], Marius Iosifescu proved in 1954 that a convex quadri-
lateral ABCD has an incircle if and only if

tan
x

2
tan

z

2
= tan

y

2
tan

w

2

where x = ∠ABD, y = ∠ADB, z = ∠BDC and w = ∠DBC , see Figure 5.
That proof was given in Romanian, but an English one was given in [8, pp.75–77].
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Figure 5. Angles in Iosifescu’s characterization

There are similar characterizations for a quadrilateral to have an excircle, which
we shall prove in the next theorem.

Theorem 4. Let x = ∠ABD, y = ∠ADB, z = ∠BDC and w = ∠DBC in a
convex quadrilateral ABCD. It has an excircle outside one of the vertices A or C
if and only if

tan
x

2
tan

w

2
= tan

y

2
tan

z

2
and an excircle outside one of the vertices B or D if and only if

tan
x

2
tan

y

2
= tan

z

2
tan

w

2
.

Proof. In [8], Theorem 7, we proved by using the law of cosines that

1− cos x =
(d + a− q)(d− a + q)

2aq
, 1 + cos x =

(a + q + d)(a + q − d)

2aq
,

1− cos y =
(a + d− q)(a− d + q)

2dq
, 1 + cos y =

(d + q + a)(d + q − a)

2dq
,

1− cos z =
(b + c− q)(b− c + q)

2cq
, 1 + cos z =

(c + q + b)(c + q − b)

2cq
,

1− cos w =
(c + b− q)(c− b + q)

2bq
, 1 + cos w =

(b + q + c)(b + q − c)

2bq
,
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where a = AB, b = BC , c = CD, d = DA and q = BD in quadrilateral
ABCD. Using these and the trigonometric identity

tan2 u

2
=

1− cos u

1 + cos u
,

the second equality in the theorem is equivalent to
(d + a− q)2(d− a + q)(a− d + q)(c + q + b)2(c + q − b)(b + q − c)

16abcdq4

=
(b + c− q)2(b− c + q)(c− b + q)(a + q + d)2(a + q − d)(d + q − a)

16abcdq4
.

This is factored as
4qQ1(a + d− b− c)

(

(a + d)(b + c)− q2
)

= 0 (10)
where

Q1 =
(a− d + q)(d− a + q)(b− c + q)(c− b + q)

16abcdq4

is a positive expression according to the triangle inequality. We also have that
a + d > q and b + c > q, so (a + d)(b + c) > q2. Hence we have proved that

tan
x

2
tan

y

2
= tan

z

2
tan

w

2
⇔ a + d = b + c

which according to (2) shows that the second equality in the theorem is a necessary
and sufficient condition for an excircle outside of B or D.
The same kind of reasoning for the first equality in the theorem yields

4qQ2(a + b− c− d)
(

(a + b)(c + d)− q2
)

= 0 (11)

where (a + b)(c + d) > q2 and

Q2 =
(a− b + q)(b− a + q)(d− c + q)(c− d + q)

16abcdq4
> 0.

Hence
tan

x

2
tan

w

2
= tan

y

2
tan

z

2
⇔ a + b = c + d

which according to (1) shows that the first equality in the theorem is a necessary
and sufficient condition for an excircle outside of A or C . !

6. Characterizations with escribed circles

All convex quadrilaterals ABCD have four circles, each of which is tangent
to one side and the extensions of the two adjacent sides. In a triangle they are
called the excircles, but for quadrilaterals we have reserved that name for a circle
tangent to the extensions of all four sides. For this reason we will call a circle
tangent to one side of a quadrilateral and the extensions of the two adjacent sides
an escribed circle.8 The four of them have the interesting property that their centers
form a cyclic quadrilateral. If ABCD has an incircle, then its center is also the
intersection of the diagonals in that cyclic quadrilateral [4, pp.1–2, 5].

8In triangle geometry the two names excircle and escribed circle are synonyms.
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First we will prove a new characterization for when a convex quadrilateral has
an incircle that concerns the escribed circles.

Theorem 5. A convex quadrilateral with consecutive escribed circles of radii Ra,
Rb, Rc and Rd is tangential if and only if

RaRc = RbRd.
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d
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rb

rd

Figure 6. The four escribed circles

Proof. We consider a convex quadrilateral ABCD where the angle bisectors inter-
sect at Ia, Ib, Ic and Id. Let the distances from these four intersections to the sides
of the quadrilateral be ra, rb, rc and rd, see Figure 6. Then we have

ra

(

cot
A

2
+ cot

B

2

)

= a = Ra

(

tan
A

2
+ tan

B

2

)

,

rb

(

cot
B

2
+ cot

C

2

)

= b = Rb

(

tan
B

2
+ tan

C

2

)

,

rc

(

cot
C

2
+ cot

D

2

)

= c = Rc

(

tan
C

2
+ tan

D

2

)

,

rd

(

cot
D

2
+ cot

A

2

)

= d = Rd

(

tan
D

2
+ tan

A

2

)

.
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From two of these we get

rbrd

(

cot
B

2
+ cot

C

2

)(

cot
A

2
+ cot

D

2

)

= RbRd

(

tan
B

2
+ tan

C

2

)(

tan
A

2
+ tan

D

2

)

,

whence

rbrd

(

cos A
2

sin D
2

+ sin A
2

cos D
2

sin A
2

sin D
2

)(

cos B
2

sin C
2

+ sin B
2

cos C
2

sin B
2

sin C
2

)

= RbRd

(

sin B
2

cos C
2

+ cos B
2

sin C
2

cos B
2

cos C
2

)(

sin A
2

cos D
2

+ cos A
2

sin D
2

cos A
2

cos D
2

)

.

This is equivalent to
rbrd

RbRd
= tan

A

2
tan

B

2
tan

C

2
tan

D

2
. (12)

By symmetry we also have
rarc

RaRc
= tan

A

2
tan

B

2
tan

C

2
tan

D

2
; (13)

so
rarc

RaRc
=

rbrd

RbRd
. (14)

The quadrilateral is tangential if and only if the angle bisectors are concurrent,
which is equivalent to Ia ≡ Ib ≡ Ic ≡ Id. This in turn is equivalent to that
ra = rb = rc = rd. Hence by (14) the quadrilateral is tangential if and only if
RaRc = RbRd. !

We also have the following formulas. They are not new, and can easily be de-
rived in a different way using only similarity of triangles.

Corollary 6. In a bicentric quadrilateral 9 and a tangential trapezoid with consec-
utive escribed circles of radii Ra, Rb, Rc and Rd, the incircle has the radius

r =
√

RaRc =
√

RbRd.

Proof. In these quadrilaterals, A + C = π = B + D or A + D = π = B + C (if
we assume that AB ‖ DC). Thus

tan
A

2
tan

C

2
= tan

B

2
tan

D

2
= 1

or
tan

A

2
tan

D

2
= tan

B

2
tan

C

2
= 1.

In either case the formulas for the inradius follows directly from (13) and (12),
since r = ra = rb = rc = rd when the quadrilateral has an incircle. !

9This is a quadrilateral that has both an incircle and a circumcircle.
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In comparison to Theorem 5 we have the following characterizations for an
extangential quadrilateral.
Theorem 7. Let a convex quadrilateral ABCD have consecutive escribed circles
of radii Ra, Rb, Rc and Rd. The quadrilateral has an excircle outside one of the
vertices A or C if and only if

RaRb = RcRd

and an excircle outside one of the vertices B or D if and only if
RaRd = RbRc.

A
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D

a
b

c
d

Ra
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Rc

Rd

Ea

Eb
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Ed

ρa

ρb

ρc

ρd

Figure 7. Intersections of four angle bisectors

Proof. We consider a convex quadrilateral ABCD where two opposite internal
and two opposite external angle bisectors intersect at Ea, Ec, Eb and Ed. Let the
distances from these four intersections to the sides of the quadrilateral be ρa, ρc, ρb

and ρd respectively, see Figure 7. Then we have

ρa

(

cot
A

2
− tan

B

2

)

= a = Ra

(

tan
A

2
+ tan

B

2

)

,

ρb

(

tan
B

2
− cot

C

2

)

= b = Rb

(

tan
B

2
+ tan

C

2

)

,

ρc

(

tan
D

2
− cot

C

2

)

= c = Rc

(

tan
C

2
+ tan

D

2

)

,

ρd

(

cot
A

2
− tan

D

2

)

= d = Rd

(

tan
D

2
+ tan

A

2

)

.
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Using the first two of these, we get

ρaρb

(

cot
A

2
− tan

B

2

)(

tan
B

2
− cot

C

2

)

= RaRb

(

tan
A

2
+ tan

B

2

)(

tan
B

2
+ tan

C

2

)

,

whence

ρaρb

(

cos A
2

cos B
2
− sin A

2
sin B

2

sin A
2

cos B
2

)(

sin B
2

sin C
2
− cos B

2
cos C

2

cos B
2

sin C
2

)

= RaRb

(

sin A
2

cos B
2

+ cos A
2

sin B
2

cos A
2

cos B
2

)(

sin B
2

cos C
2

+ cos B
2

sin C
2

cos B
2

cos C
2

)

.

This is equivalent to

ρaρb
cos A+B

2

(

− cos B+C
2

)

sin A
2

cos2 B
2

sin C
2

= RaRb
sin A+B

2
sin B+C

2

cos A
2

cos2 B
2

cos C
2

,

which in turn is equivalent to

ρaρb

RaRb
= − tan

A + B

2
tan

B + C

2
tan

A

2
tan

C

2
. (15)

By symmetry (B ↔ D), we also have

ρcρd

RcRd
= − tan

A + D

2
tan

D + C

2
tan

A

2
tan

C

2
. (16)

Now using the sum of angles in a quadrilateral,

tan
A + B

2
= − tan

D + C

2

and

tan
B + C

2
= − tan

A + D

2
.

Hence

tan
A + B

2
tan

B + C

2
= tan

A + D

2
tan

D + C

2
so by (15) and (16) we have

ρaρb

RaRb
=

ρcρd

RcRd
. (17)

The quadrilateral is extangential if and only if the internal angle bisectors at A and
C , and the external angle bisectors at B andD are concurrent, which is equivalent
to Ea ≡ Eb ≡ Ec ≡ Ed. This in turn is equivalent to that ρa = ρb = ρc = ρd.
Hence by (17) the quadrilateral is extangential if and only if RaRb = RcRd.
The second condition RaRd = RbRc is proved in the same way. !
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We have not found a way to express the exradius (the radius in the excircle)
in terms of the escribed radii in comparison to Corollary 6. Instead we have the
following formulas, which although they are simple, we cannot find a reference
for. They resemble the well known formulas r = K

a+c = K
b+d for the inradius in a

tangential quadrilateral with sides a, b, c, d and area K.

Theorem 8. An extangential quadrilateral with sides a, b, c and d has the exradius

ρ =
K

|a− c|
=

K

|b− d|

where K is the area of the quadrilateral.

Proof. We prove the formulas in the case that is shown i Figure 8. The area of the
extangential quadrilateral ABCD is equal to the areas of the triangles ABE and
ADE subtracted by the areas of BCE and CDE. Thus

K = 1

2
aρ+ 1

2
dρ− 1

2
bρ− 1

2
cρ = 1

2
ρ(a + d− b− c)

where the exradius ρ is the altitude in all four triangles. Hence

ρ =
2K

a− c + d− b
=

K

a− c
=

K

d− b

since here we have a+b = c+d (the excircle is outside of C), that is a−c = d−b.
To cover all cases we put absolute values in the denominators. !

ρ

ρ

ρ

ρ

A B

C

D

a

c

d

E

b

Figure 8. Calculating the area of ABCD with four triangles

This theorem indicates that the exradii in all parallelograms (and hence also in
all rhombi, rectangles and squares) are infinite, since in all of them a = c and
b = d.
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