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An extension of the six-point circle theorem for a
generalised Van Aubel configuration

DARIO PELLEGRINETTI, MICHAEL de VILLIERS

Introduction

We deal with an extension of the six-point circle theorem for the
quadrilateral [1] when the Van Aubel configuration is generalised as in [2]
and [3]: similar parallelograms are constructed, all internally or all
externally, on the sides of a given quadrilateral.

Van Aubel's theorem and the six-point circle

We briefly recall Van Aubel's theorem and the six-point circle theorem.
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FIGURE 1: Van Aubel's theorem and six-point circle

Theorem (Van Aubel's theorem [4])

Given a convex quadrilateral, on each side construct a square externally
to the quadrilateral. Join the centres of the squares constructed on the
opposite sides. Then the segments obtained are of equal length and
orthogonal to each other.
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The theorem holds true also for re-entrant quadrilaterals [5], or when the
squares are constructed internally to the given quadrilateral.

For crossed quadrilaterals, the theorem holds true when the
constructions are carried out in a more general way as shown in [1]: care
should be taken in constructing the squares, as external and internal
constructions are not definable in this case. Looking at Figure 1, for the
external construction, the equal and orthogonal segments are represented by

and , and they intersect at (the first or outer Van Aubel point [1, 6]).
For the internal construction, the equal and orthogonal segments are
represented by and , and they intersect at (the second or inner
Van Aubel point) on the extension of segment .
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The Van Aubel segments and bisect each other at , and
and  bisect each other at , as proved in [1].

GI H′J′ W HJ
G′I′ U

In [1], Pellegrinetti proved the following additional property:

Theorem: The midpoints and of the quadrilateral's diagonals, the first
and second Van Aubel points and , and the midpoints and of the
Van Aubel segments all lie on a circle. Segments and are two
mutually orthogonal diameters of the circle.
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A trivial consequence is that the centre of the circle coincides with the
quadrilateral's vertex centroid [7]. Just as for Van Aubel's theorem, this
theorem holds true independently of the quadrilateral type.

The nomenclature used in [1], although helpful, is not fully correct:
formally, a quadrangle does not have diagonal lines. For example, the
Gauss-Newton line, defined as the line through the midpoints of the
quadrilateral's diagonals, is not definable for a quadrangle.

An extension of Van Aubel's theorem − a synthetic proof

Van Aubel's theorem has been extended to similar rhombi and similar
rectangles on the sides in [8], and an extension to similar parallelograms was
mentioned, without proof, in [2]. In [8], synthetic proofs are presented while
Silvester develops a more general algebraic proof in [3] for similar
parallelograms on the sides. Let represent the angle between two

segments and , that is where . With
this definition .

∠ (PQ, RS)

PQ RS ∠ (PQ, RS) = ∠QPT PT
→

= RS
→

∠ (SR, PQ) = π − ∠ (PQ, RS)

Theorem

If directly similar parallelograms , , and , with
respective centres , , and are erected on the sides of a given
quadrilateral , then , and
(see Figure 2, where we have drawn convex, and the parallelograms
are erected externally).

AMNB CBOP RDCQ STAD
G H I J

ABCD JH / IG = AB / AM ∠ (IG, JH) = ∠MAB
ABCD
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Proof:

Let , and . Then,
because and are similar, we have and

. Thus there is a spiral similarity with scale factor and
angle such that , and . It follows that

and . Let be the midpoint of . Then, since
, , are the midpoints of , , , respectively, if we apply the

triangle midsegment theorem to and , we deduce that
 and .

AB / BN = λ ∠MAB = α ∠ABN = β = π − α
AMNB CBOP OB / BC = λ

∠OBC = β s λ−1

β s (B) = B s (A) = N s(O) = C
AO /NC = λ ∠ (CN, AO) = α E AC
G E H AN AC CO

△ACN △ACO
∠GEH = α EH / EG = λ

By a similar argument, since , are the midpoints of , ,
respectively, then and . So there is a spiral similarity

with scale factor and angle such that , and
. It follows that and , as

required.

I J CR AS
EJ / EI = λ ∠IEJ = α

s′ λ α s′ (E) = E s′ (G) = H
s′ (I) = J JH / IG = λ ∠ (IG, JH) = α = ∠MAB
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FIGURE 2: Extension of Van Aubel's theorem

Just as for Van Aubel's theorem, this theorem is quite general. It holds
true when the parallelograms are erected internally on the sides of the given
quadrilateral and no matter if this latest is convex, re-entrant or even crossed
(in this last case, external/internal ceases to have any meaning − see
previous section). The configuration for the internal parallelograms is
represented in Figure 3. The internal parallelogram centres are produced
reflecting the centres of the externally erected parallelograms with respect to
the sides of the given quadrilateral. So, in such a configuration, the internal
parallelograms (not shown in the Figure) are symmetric to the external ones
with respect to the quadrilateral sides, so that the angle formed by the sides
of these internal parallelograms equals . We invite readers to draw other
possible configurations where two of the points coincide, or three
of them or even all four are collinear, for example.

α
A, B, C, D
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Extending the nomenclature provided in [1], point (in Figure 2) and
point (in Figure 3) will be referred to as generalised Van Aubel points.
The segments and will be referred to as generalised Van
Aubel segments.
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FIGURE 3: Extension of Van Aubel's theorem, internal construction*

A new class of five-point circles

Looking again at Figure 2, let the midpoints of the generalised Van
Aubel segments, and , be and , respectively, and let be the
midpoint of the quadrilateral's diagonal . We state:

JH IG U W F
BD

Theorem

Points  and  are concyclic.E, F, W , U V

Proof

Since the spiral similarity (as above) sends to , it also
sends the median to the median , and therefore . and

are on the different sides of . Applying the converse of proposition 22
from the third book of Euclid's Elements [9, 10] to quadrilateral (a
convex quadrilateral is cyclic if, and only if, its opposite angles are
supplementary − or, equivalently, if, and only if, an exterior angle is equal to
an opposite internal angle), points and are concyclic. For the

s′ △GEI △HEJ
EW EU ∠WEU = α E

V WU
EWVU

E, W , V U

* For clarity, we have drawn the external parallelograms rather than the internal
ones. The centres of the internal parallelograms and are the
reflections of the centres of the external parallelograms in the respective sides.

G′, H′, I′ J′
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proof to hold for any possible configuration (different values of and/or
and/or a different quadrilateral ), we must handle the case in which
and are on the same side of . In this case, is subtended by the
equal angles and . So applying the converse of
proposition 21 from the third book of Euclid's Elements [9, 10] we deduce
again that and are concyclic. Similarly, points and
are concyclic, whence the result.
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ABCD E
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∠WEU ∠WVU
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FIGURE 4: Two symmetric five-point circles for the symmetric external and internal
generalised Van Aubel configurations

This five-point circle, , is represented in Figures 4 and 5.ε

For different values of and different five-point circles can be
obtained, but they all pass through and . This way, a system of coaxial
circles with the Gauss-Newton line as common chord is generated. Again,
this theorem is fully general: in Figure 4 we also show the five-point circle

corresponding to the internal configuration with the internal
parallelograms symmetric to the external ones with respect to the
quadrilateral sides. We notice that circles and seem symmetric with
respect to the Gauss-Newton line of the quadrilateral. We also wonder if
different configurations produce again the circle. The following theorem
resolves these latest points and opens the door to a few additional results.
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Theorem

There is a spiral similarity between and such that
, , .

k △ADJ △EFU
k (A) = E k (D) = F k (J) = U

Let be the circle through , , ; we have . Similarly, there
is a spiral similarity, , between and such that
with the circle through , , (see Figure 5). For the proof we will
exploit the following lemma presented and proved in [11]:

γ A D J k (γ) = ε
k′ △CBH △EFU k′ (γ′) = ε

γ′ B H C

Lemma: If the corresponding vertices of two directly similar figures are
connected, then the midpoints of those connecting segments form another
figure, similar to the other two.

Proof: Because the parallelograms constructed on the sides and are
similar by hypothesis, there is a spiral similarity between and

such that , and . Because , , are
the midpoints of , , , respectively, applying the lemma we deduce
that there is a spiral similarity between and , such that

, , .

AD BC
h △ADJ

△CBH h (A) = C h (D) = B h (J) = H E F U
AC DB JH

k △ADJ △EFU
k (A) = E k (D) = F k (J) = U
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FIGURE 5: A revealing proof

This proof enables the computation of the radius of circle . For by the
similarities, , say, which is the angle between
the diagonals of the parallelogram. Then subtends an angle at the

centre of , whence its radius is .

ε
∠EUF = ∠AJD = ∠CHB = θ

EF 2θ

ε
EF

2 sin θ
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Also, it follows that, if the parallelograms are altered by moving to
some other point of the same circle , then is invariant. And it also follows
that, if the parallelograms are reflected in the various sides of the
quadrilateral, then is reflected in and hence is reflected in the image
of , that is in (see Figure 4). So the symmetry relation between and

around the Gauss-Newton line is explained. We notice that circle is
equal to its reflection if, and only if, is a diameter, that is if, and only if,

is a diameter of . This means that or , which happens
if, and only if, the parallelograms are rhombi. In other words, in such a case,
circle becomes the six-point circle for the quadrilateral. It follows that the
six-point circle can be traced as the locus of the the generalised Van Aubel
points or the midpoints of the generalised Van Aubel segments when the
rhombi are continuously altered. The dynamic geometry sketches at [12]
illustrate these last results.

J
γ ε

γ AD ε
AD EF ε

ε′ ε
EF

AD γ θ = π / 2 AJ⊥JD

ε

A few concluding remarks

Interestingly, for the internal configuration in which the sides ratio of
the parallelogram is inverted with respect to the sides ratio of the external
configuration and the angles between the parallelogram sides are kept as for
the external configuration ( and or
else ), we get the same circle as for the external configuration because
point belongs to the same circle . Finally, whenever , , and are
collinear, circle degenerates onto the Newton-Gauss line of the
quadrilateral: maps onto and or 0 (depending whether
is between  and  or not), so that  and the radius of  is infinite.

AB/AM′ = λ−1 = (AB/AM)−1 ∠BAM′ = α
π − α

J′ γ A D S T
ε ABCD

k γ = AD ε θ = π J
A D sin θ = 0 ε
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