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Chapter 6

Generalizing Varignon's theorem

One of the most fascinating aspects of mathematics, as already pointed out in Chapter 3, is that
it is an evolutionary process in the sense that solutions to problems often lead to further
problems, provided one retains an enquiring and open mind to continue asking questions. As
Daltry (1966:20) put it: "..the end of problem-solving may not be solutions so much as new
problems." A particularly useful problem posing strategy is to always consider the possibility
of generalizing a particular result, no matter how trivial it may seem, or even when a

conjectured generalization turns out to be false.

What follows is an illustrative example of the application of this strategy to Varignon's theorem
as illustrated in Figure 81, namely, that if the midpoints E, F, G and H of the adjacent sides of
any quadrilateral ABCD are consecutively connected, then EFGH is a parallelogram (also see
Questions and Problems 3, no. 5). According to Coxeter & Greitzer (1967:53), the first
known published proof of this rather simple result was only given in 1731 by Pierre Varignon,
and the inscribed parallelogram is consequently often referred to as the Varignon parallelogram.
It should again be pointed out that the investigations which follow in this chapter are
particularly suited for exploration or demonstration on dynamic software like Cabri Géométre

or Geometer's Sketchpad .

Figure 81

How can we generalize this result? What about generalizing it to other polygons? Is it really
necessary that E, F, G and H are midpoints of the sides? Or phrased differently, how can we

maintain the result if E, F, G and H are not midpoints?
A first generalization

Let us first look at the generalization to other polygons. Since the result deals with a
quadrilateral which has an even number of vertices, we skip the pentagons and firstly consider

the possibility of an analogous result for hexagons. If we consecutively connect the midpoints
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of the adjacent sides of a regular hexagon, we find another regular hexagon as shown in Figure
82a. In other words, we obtain a hexagon with opposite sides parallel and equal, i.e. a
parallelo-hexagon. (Also see Solutions 2, no. 17). Of course, this is not true in general, for if
we repeat the construction with the hexagon shown in Figure 82b, we do not find a hexagon
with opposite sides parallel and equal. The question now arises: under which conditions would
we find a hexagon with opposite sides parallel and equal?

Figure 82

Well, let's just for a moment reflect back on the deductive explanation for the quadrilaterals and
the characteristic property upon which it depends (Figure 81). By drawing a diagonal (or
both), we simply utilize the theorem that the line segment connecting the midpoints of two
sides of a triangle is parallel and equal to half the length of the third side. Now bearing this
explanation in mind, and looking at the hexagon in Figure 82b, it should immediately be clear
that GH would be parallel and equal to the opposite side JK if AC //= DF. Similarly, it follows
that BD //=EA = HI //= KL and CE //= FB = 1J //= LG. In other words, in any hexagon
with the aforementioned properties we would find an inscribed parallelo-hexagon.

What is more, a hexagon ABCDEF with AC //= DF, BD //= EA and CE //= FB, would itself
be a parallelo-hexagon. For example, AC //=DF = ACDF is a parm = AF //= CD. The
same is true for the other two pairs of opposite sides. Three examples of parallelo-hexagons
with the midpoints of their sides consecutively connected to form inscribed parallelo-hexagons
are shown in Figure 83. Note that the parallelo-hexagons ABCDEF can be drawn by
constructing two congruent triangles ACE and DFB with AC//DF, AE//DB and CE//FB, and
then connecting A, B, C, D, E and F. (Also compare the three inscribed parallelo-hexagons.
What relationship is noticeable between them? Why?)

By using the same reasoning, we can now easily extend the result to an octagon ABCDEFGH
with the properties that AC //= EG, BD //= FH, CE //= GA and DF //= HB. As shown in
Figure 84, inscribed parallelo-octagons are formed if we consecutively connect the midpoints
of the sides of such figures. Note however, that in this case the octagons ABCDEFGH are not
necessarily parallelo-octagons. Such octagons can easily be drawn by constructing any two
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parallelograms ACEG and BDFH and then simply connecting A, B, C, D, E, F, G and H.

Figure 84

We can now generalize the result as follows:
¢)) "If A1A2...A2n (n > 1) is any 2n-gon with AjAi+2 //= Ai+nAi+n+2 (0 = 1;2; ...n) and
Bj are the midpoints of AjAj+1 (G = 1; 2; ...2n), then B1B2...B2p is a parallelo-2n-

"

gon".

Proof

The proof is straight forward, following directly from the theorem that the line segment
connecting the midpoints of two sides of a triangle is parallel and equal to half the length of the
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third side. For example, as illustrated in Figure 85a where n =4, BiBj+1//= %AiAi+2 and
Bj+nBj+n+1 = %Ai+nAi+n+2- But it is given that AjAi+2 //= Ai+nAi+n+2 which implies
that BjBj+1 //= Bj+nBj+n+1 and therefore that B1B3...B2nisa parallelo-2n-gon.

A

Figure 85

This result is of course further generalizable to 2n-gons with the property AjAi+2//Ai+nAi+n+2
or AjAitn+2 = Ai+nAi+n+2 for which the respective inscribed 2n-gons would have BiBj+1//
Bj+nBj+n+1 or BjBj+1 = Bj+nBj+n+1. (Note that a 2n-gon with opposite sides parallel
necessarily implies opposite sides equal, and vice versa, only in the case of a parallelogram).
Let's also briefly look at the special case of the quadrilaterals (Figure 85b). According to the
condition of the above theorem, we should in the case of a quadrilateral A]JA2A3A4 have
A1A3//= A3A1 and A2A4 //= A4A2, which means that each diagonal must be parallel and
equal to itself. But this is obviously true for any orientation or lengths of the diagonals and
accounts for the variation of quadrilaterals shown in Figure 81.

The general theorem (1) also has the following interesting corollary, the proof of which is left

to the reader:
2 "The perimeter of the inscribed parallelo-2n-gon is equal to the sum of AjAj42 (or to
half the sum of AjAj+2 where j = 1; 2;...2n)".

In the special case of the quadrilaterals, this simply means that the perimeter of the inscribed
quadrilateral B1B2B3B4 is equal to the sum of the diagonals of the quadrilateral A]A2A3A4

(compare Denson, 1989).
A second generalization

Let us now return to the original result and critically examine the necessity of B1, B2, B3 and
B4 being midpoints of the sides (see Figure 86). As mentioned before, the result depends on
B1B2 // A1A3 // B3A4 and B1B4 // A2A4 // BoA3. How can we maintain these relationships
if B1, B2, B3 and B4 are not midpoints of the sides?

Well, the line segment B1B4 would remain parallel to ApA4 provided the two sides A1A2 and
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A1A4 are divided in the same proportion (ratio) by B1 and B4. Since the same is true for the
other line segments, B1B2B3B4 would clearly be a parallelogram if

AB = A B, — AB) — A;B;

BA, BA, B,A, BA, .

A

B
B| A BQ
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Figure 86
Spontaneously our next questions arise:
® What is the relationship between the perimeter of such an inscribed parallelogram and

the diagonals of the original quadrilateral? Has it changed or does it stay the same?
(i)  Isthis result also generalizable to the 2n-gons described before?

With regard to the first question, we unfortunately find that the perimeter is no longer
necessarily equal to the sum of the diagonals. In fact, if we let

AB — A B, - A;B, — A, B, _P

BA, BA, BA, BA, ¢ ‘
then it can be easily shown that the perimeter is equal to 2(gA1A3 + pA2A4)/(p + q).
Interestingly, if A]A3 = A2A4, this formula reduces to 2A1A3 or 2A2A4.

A

Figure 87
Let us now consider the second questioh above in relation to the parallelo-hexagon

A1A2A3A4A5A6 shown in Figure 87. Careful investigation shows that if
AB - A;B, — As B, — AsB, — AsB; — A By

BA, BA, BA, BA, B B.A,

then B1B2B3B4B5B¢ would clearly be a hexagon with opposite sides parallel. (Note: In
Solutions 2, no.17 (Figure 2.31) we called such a hexagon a parallel-hexagon, and its
generalization to polygons, a parallel-2n-gon). In fact, AjAi+2 need not be parallel and equal
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to Aj+3Aj+5 for this particular result to be true, but only parallel. We can therefore now

formulate the following generalization:

3) "If A1A2...A2n (n > 1) is any 2n-gon with AjAi+2 // Aj+nAi+n+2 (( = 1; 2;...n) and
Bj are points on AjAj+1 (= 1;2;... 2n) so that for k= 1; 3; 5;..2n - 1

A B, - AvyBiy _ P

BA., B 4

then B1B2...B2y is a parallel-2n-gon (opposite sides parallel)."

b

Proof

The proof follows directly from the theorem that if a line segment connecting two points
divides two sides of a triangle into equal ratios then it is parallel to the third side. For example,
it implies that BiBj+1/AiAi+2 and Bj+nBj+1+n//Ai+nAi+n+2. But since AjAi+/Aj4nAi+n+2
we have Bij+1//Bj+nBj+n+1 and therefore that B1B2...B2p, is a parallel-2n-gon.

Of course, in the special case of a quadrilateral we obtain a parallelo-2n-gon (parallelogram),
since opposite sides parallel implies opposite sides equal. Furthermore, we have the following

corollary of theorem (3), proof of which is also left to the reader:

4 "The perimeter of the inscribed parallel-2n-gon is equal to
qZA2i—1A2i+l + PZ AjAsina
i=1 i=1
ptq

1"

If we have X A2i-1A2i+1 = X A2iA2i+2 the perimeter reduces to ¥, A2i-1A2i+1 or X,
A2iA2i+2. Of course, if AjAj+2 are all of equal length, let's say d, then the perimeter simply

becomes nd.
A counter-example

As mentioned in Chapter 3, quasi-empirical testing/experimentation often plays an important
part in the development of a piece of new mathematics. However, it is possibly one of the most
neglected aspects when it comes to the teaching of mathematics. Quasi-empirical
testing/experimentation is useful since it not only gives us confidence in the validity of our
conjectures and theorems, but also an essential concrete understanding/appreciation of their
meaning and domains of validity which is sometimes not revealed by logical deduction. More
importantly, it can produce counter-examples which necessitate either abandonment or

reformulation of conjectures, definitions and/or proofs.

Earlier it was mentioned and proved that any hexagon with AjAj4+2 //= Aj+3Aij+5 is a parallelo-
hexagon. Let's test this observation by trying to construct a hexagon with this property, but

different from those shown in Figures 82a, 83 and 87. In the last two cases, the hexagons
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were drawn by constructing two congruent triangles ACE (A1A3As5)and DFB (A4AgA2)with
AC//DF (A1A3//A4A¢), AE//DB (A1As5//A4A2) and CE//FB (A3A5//AgA2), and then
connecting A(A1), B(A2), C(A3), D(A4), E(As) and F(Ag). Or in other words, by first
constructing AACE (A1A3Aj5) and then rotating it through 180° to map onto ADFB(A4AgA2).
However, we can also maintain the parallelness of AjAj+2 and Aj+3Aj+5 by translating
AA1A3A5 to map onto AA4AgA2, and then connecting the vertices to obtain the figures shown
in Figure 88.

Figure 88

These figures are clearly not parallelo-hexagons as opposite sides are not parallel and equal, but
in fact are unequal in length and intersect. In this case, the earlier given proof is false since it is
based on the implicit assumption that the opposite sides AjAj+1 and Aj+3Aj+4 do not intersect,
and is therefore applicable only to the type of configuration shown in Figures 82a, 83 and 87.
However, this example does not invalidate generalizations (1) and (3), as illustrated
respectively by Figures 88a and 88b. Also note that in the first case opposite sides BiBj+1 and
Bj+3Bi+4 actually coincide to produce a degenerate parallelo-hexagon in the form of a triangle.
(This happens because the opposite sides of A1A2... Ag intersect in their midpoints).

Considering converses

Let's now consider possible converses of Theorems 1 and 3. In both these theorems we
connected points which divided the sides of a 2n -gon proportionally, to obtain another 2n -
gon with opposite sides equal and parallel, or just parallel. Conversely, we should therefore
now consider the case where we start at the midpoints, or any other point B of a particular
side, say A1A2 and drawing B1B2//A1A3, B2B3//A2A4, etc. with B, B3, etc. on A2A3,
A3A4, etc.

For example, what happens if we start with the midpoint B1 of side A]A2 of the hexagon with
AjAi+2//= Aj+3Aj4+5 shown in Figure 89a, and we draw BiBj+1//AjAj+2? Similarly, what
happens if we start out with any point B] of side A]jA2 of the hexagon with ‘
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AjAj+2//=Ai+3Ai+5 shown in Figure 89b, and we draw BjBj+1//AjA;j+27 What happens if
AjAj+2 is only parallel to Aj+3Aj+5, but not equal? What happens if we choose B1 on any of

the other sides?

Figure 89

Complete the figures above by continuing to draw BjBj+1/AjA;j+2. What do you notice? Also
construct hexagons with AjAj+2 only parallel to Aj4+3Aj+5, but not equal, and repeat the
previous exercise with B1 a midpoint or any other point. What do you notice? Can you

formulate and explain your observations?

Although intuitively one may anticipate that one could go on indefinitely without necessarily
returning to the original starting point, we find the rather surprising result that we always return

to the start no matter where the starting points are chosen. Furthermore, in the two figures
above we always find a parallelo-hexagon, while in the second case with AjAj+2 only parallel

to Aj+3Aj+5, always a parallel-hexagon. These observations can now be generalized to the

following corresponding converses to Theorems 1 and 3:

) "If A1A2... A2n(n >1) is any 2n - gon with AjAj42//= Aj4nAj4+n+2 (i =1; 2;...n) and
BiBj+1 is drawn parallel to AjAj+2 (G=1; 2;..2n) starting from the midpoint B of
AjAj+1, then a closed parallelo-2n-gon B1B2...B2p, is formed"

6) "If A1A2...A2p(n >1) is any 2n-gon with AjAj4+2//Aj4nAj+n+2 (i =1; 2;..n) and
BiBj+1 is drawn parallel o AjAj+2 (j=1; 2;...2n) starting from any point B] on a side
AjAj+1, thena closed parallel-2n - gon B1B2...B2, is formed."

Proof

We shall now only prove that the 2n-gons referred to above are closed, leaving the rest of the
two proofs to the reader to complete. Consider the case where B is on A1A2. It is therefore
required for us to prove that the point B2n+1 is the same as B]. Since B;Bj+1 is drawn parallel
to AjAj+2 we have as before:
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AB — A,B, — A,B; — AsB,
BA, BA, BA, BA,
AB _ AusBy P where k = 1; 3; 5;...
BA, B.Aa 4

=... etc., or in general:

Considering k = 2n + 1 we will therefore have that
AIBI = ASB’Z J— A’2n+1B2n+1 = A2n+3B2n+2

BlAZ B2A2 - B2n+1A2n+2 B2n+2A2n+2 '

Compare the first and third ratios above. Since A2p+1 and A2p+2 are the same points as A]
and A) respectively, we therefore have that the point B2n+1 and B are the same point.
Similarly, if we choose B1 on any of the other sides, we can show that B1 and B2p+1 are

identical.

Looking back

However, looking back and reflecting on our preceding proof, it should be clear that we did
not at all utilize the property AjAj+2//Ai+nAi+n+2- This proof therefore immediately provides
us with the following interesting generalization (illustrated for a hexagon in Figure 90):

@) "If A1A2...A2(n >1) is any 2n-gon and BiBj+1 is drawn parallel to AjAj+2 G=1;
2;...2n) starting from any point B] on a side AjAj+1, then a closed 2n-gon
B1B2...B2p is formed".

Ag

-
P e - —————

————— i

Figure 90

(It is left to the reader to complete the figure in Figure 90).
An analogous result

Let's now examine what happens if we carry out the same procedure of drawing
BjBj+1//AjAj+2 on a triangle, pentagon, septagon, etc. The reader is now invited to carry out
this procedure on the two figures shown in Figure 91. What do you notice? Can you form a
generalization?
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Figure 91
Investigating some cases the following generalization analogous to Theorem 7 can be made:

) "If A1A2...A2n-1(n >1) is any (2n-1)-gon and BjBj+1 is drawn parallel to AjAj+2( =
1; 2;...4n-2) starting from any point B] on a side AjAj+1, thena closed (4n-2)-gon
B1B2...B4p-2 is formed".

Proof

The proof is straight forward, for example, consider the case where B] is on A]A2. Let us
now first consider the point B2 which will also be on AjA2. Since BiBj+] is drawn parallel
to AjAj4+2 we have as before:

ABy = A Bea _ P where k= 1;2; 3; 5;...
BA., B.A. 4q

Considering k = 2n -1 we will have that :
AlBl - = A2n—1B2n—1 = A2n+1B2n

BIA'Z h BZn—lA’ln BZnAZn .

Compare the first and third ratios above. Since A2n+1 and A2p are the same points as A2 and
A1 respectively, it clearly follows that B1 and B2y will be the same point only when B1 is the

midpoint.

Let us now show that B4p-1 is the same point as B1. Considering k = 4n -1 we will have that:
AlBl == A4n—1B4n—l — A4n+1B4n i
B1A2 B4n—1A4n B4nA4n

Compare the first and second ratios above. Since A4p-1 and A4y are the same points as A
and A2 respectively, we therefore have that the point B4p-1 and B are the same point.
Similarly, if we choose B1 on any of the other sides, we can show that B] and B4p-1 are

identical.
Some reflections

The generalizations described in this chapter would probably not have been possible to make
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simply by blind, trial and error experimentation, since an understanding of the explanatory
property which makes it true for quadrilaterals, proved indispensable throughout the whole
exploration. In particular, the generalization from Theorems (5) and (6) to Theorem 7 is a good
example of the discovery function of proof described in Chapter 3, whereby the deductive
indentification of the explanatory property of a particular result often enables further

generalization.

It is furthermore important to distinguish between two different kinds of generalization
demonstrated here, namely inductive generalization and deductive generalization. With
inductive generalization is meant here that a generalization is initially made on quasi-empirical
grounds without necessarily any deductive thought involved, for example observing and
formulating generalizations like Theorems 5 and 6 from the consideration of some particular
cases like the figures in Figure 9. A deductive generalization on the other hand is made on the
basis of a logical deduction, for example by deductively analysing the conditions of a particular
theorem (or theorems) and finding from its proof that a specific condition is sufficient, but not
necessary, thereby enabling further generalization. The generalization of Theorem 7 from the
proofs of Theorems 5 and 6 is therefore also a good example of deductive generalization.

Further questions

In keeping with the spirit of this book, inquisitive readers may wish to follow up with
questions like the following for further exploration, or add questions of their own:

(a) Can you find analogous results of the preceding theorems involving equal-2n-gons?
(Opposite sides equal - see Solutions 2, no.17).

(b) ) Can you draw a quadrilateral configuration to give a degenerate parallelogram
when the midpoints of the sides are connected? What figure can be anticipated?
(i) Can you draw an octagon configuration to give a degenerate parallelo-octagon
when the midpoints of the sides are connected? What figure can be anticipated?

(©) Specialization is often also a useful problem posing strategy. For example, consider the
following two special cases of the original theorem (see Figure 53):
(6] If the midpoints of the sides of any perpendicular quad are connected, then we
obtain a rectangle. Can you generalize this result?
(i) If the midpoints of the sides of any diagonal quad are connected, then we obtain
athombus. Can you generalize this result?
(iii)  Further specialization would be to ask under what conditions would we obtain a
square and to try and generalize it.

(d) A further interesting property of the original theorem for convex quadrilaterals is that
the area of the inscribed parallelogram EFGH is half the area of the quadrilateral ABCD
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(see Figure 81). (Hint: compare the area of AAEH with that of AABD, the area of
ABFE with that of ABCA, etc.).
@) Is this result true for concave and crossed quadrilaterals?

(i) Can you generalize it?

Consider the case shown in Figure 92 where the midpoints of the sides of a triangle
have been connected. Does it have any properties which are generalizable to (2n-1)-
gons? Can you extend the result to other points on the sides of a triangle and generalize

to (2n-1)-gons?

Consider the regular hexagon (star of David) shown in Figure 93. If the midpoints of
the sides are connected as shown, another star of David is obtained. Can you generalize

this result?

A

A

B, Bs

AZ 82 AS

Figure 92 Figure 93

Another result directly related to the original theorem is given in Coxeter & Greitzer
(1967:54), namely: the segments B1B3 and B2B4 joining the midpoints of the opposite
sides of a quadrilateral and the segment C1C2 joining the midpoints of the diagonals are
concurrent and bisect one another (see Figure 94). Can you also generalize this result?

Figure 94

We can specialize the original theorem in another way. For example, if sides A]A2 and
A2A3 are lying in a straight line as shown in Figure 95 and the midpoints are connected
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as before, an inscribed parallelogram is obtained in the triangle A]A3A4. We can
therefore inscribe a parallelogram in any triangle by consecutively connecting the
midpoints of two sides with the midpoints of any two subdividing sections of the third
side (in which case the one side of the parallelogram coincides with part of the third
side and is half its length). Can you generalize this result?

A‘ B| Az Bz A?’
Figure 95

Figure 96

Suppose we translate a quadrilateral A]A2A3A4 with an inscribed Varignon
parallelogram B1B2B3B4 some distance into three dimensional space to obtain their
images A'1A'2A'3A'4 and B'1B'2B'3B'4, and consider the three dimensional figures
traced out by the translation of the vertices. As shown in Figure 96 we would then have
a parallelo-piped (a solid bounded by six parallelograms as its faces, the opposite pairs
being congruent and parallel) inscribed in a prism (a solid with two parallel congruent
polygons as opposite faces with edges joining corresponding vertices so that the
remaining faces are parallelograms). Can you generalize this result as before? Can you
apply the theorems in this chapter, as well as the area relationship mentioned in
question (d) above? Can you further generalize to n dimensions?



