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The role of technology in mathematical modelling

Michael de Villiers, Mathematics Educatlon, University of Durban-Westvllle, Durban 4000

"It is dangerous to assume that skills from one era
will suffice for another. Skills are tools. Their im-
portance rests on the needs of the times. Skills once
considered essential become obsolete, and this is
likely to increase in pace and scope as advances in
technology revolutionize our individual, social and
economic lives. Necessary new skills arise from the
dimensions of the mathematics pertinent to an age
of ... micro electronic wonders." — NCTM (1980)

Introduction
The secondary school curriculum has traditionally fo-
cused almost exclusively on developing pupils’ manipu-
lative skills (e.g. simplifying, factorising, solving equa-
tions, differentiation, etc). This focus was in part due to
the pervasive belief amongst teachers (and curriculum
developers?) that such technical skills were essential
prerequisites for problem solving and mathematical mod-
elling, and therefore first had to be mastered. Now,
however, the wide availability of graphics calculatersand
computer programmes is seriously challenging this
"Theory & manipulative skills + Applications & Problem
solving" approach.

In what follows a brief discussion of the nature of
mathematical modelling will be given, followed by five

examples of the use of computer software in solving

practical problems that the author has successfully used
with his mathematics education students (prospective
senior primary and junior secondary teachers).

The nature of mathematical modelling
The process of mathematical modelling essentially con-
sists of three steps as illustrated in Figure 1, namely, (1)
construction of the mathematical model, (2) solution of
the model and (3) interpretation and evaluation of the
solution.
During the construction of the model several pro-
cesses are often necessary, for example:
« the making of appropriate assumptions to simplify
the situation
= data often has to be collected, tabulated, graphed,
transformed, etc,
identification and symbolization of variables
the construction of sujtable formulae and/or repre-
sentations like scale drawings, ctc.
During the solution process, we obviously apply mathe-
-matical techniques such as factorisation, differentiation,
solution of equations, etc. Lastly, in the ir(terprctation

and evaluation of the solution we need 1o check whether
itis realistic by critically comparing it with the real world
situation.

PRACTICAL
PROBLEM
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MATHEMATI CAL
SOLUTION T MUODEL
Figure 1

As will be shown later on, new computer software can
greatly assist us with the routine manipulations involved
in the second step once an appropriate model has been
constructed. However, the computer is usually of very
little assistance in the first and last steps. Here human
ingenuity and understanding is absolutely essential — if
a model is inappropriate the computer may produce an
answer which is completely senseless. Computers (and
calculators) can only do what they are told and are
dependant on the accuracy of the data or model which is
fed into them. Essentially, computers {(and calculators)
are rather stupid and cannot think for themselves: we
have to do that for them. Computer scientists have a very
sound saying, namely: GIGO, which means "Garbage In
— Garbage Out".

The availability of computer software (and calcula-
tors) that can aid us with the second step therefore
strongly challenges the traditional approach which em-
phasises technical and manipulative skills at the cost of
developing skills in model construction and interpreta-
tion. In the global society where computers in the work-
place are becoming more and more pervasive, one’s
"matheracy” should no longer be measured so much in
terms of one’s ability 1o do routine manipulative skills
by hand, as in competency in Steps (1) and (3), as well as
with proficiency in handling modern technology (for
example computer software, calculators, etc.) during
Step (2). It is time to acknowledge that in modelling,
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Step 2 is merely a means to an end, and should not be
regarded as an end in itseif.

In modern applied mathematics, calculators and
computers are absolutely essential tools of the trade, just
as the hammer and saw is to the carpenteror the panand
the pot is to the chef. It is simply unthinkable of a
carpentry or a catering course without the appropriate
tools and some practical work,

Example 1
"4 man is 20m from a bus stop when the bus starts
pulling away with an acceleration of 1 mfs® (see
Figure 2). At the same time, the man starts running
with a speed of 6m/s. Will the man catch the bus? If
so, when? If not, what is the closest he gets to the
bus?"

Let us take as origin the initial position of the man 20m

from the bus stop. Then from science, we have that the

distance covered by the man after x seconds is given byy

Fomn T 20 m

g Gul N
1 m/s 6m/s
44— 4—

Declarations Figure 2
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= 6, and that of the bus is given byy = %xz + 20. The

problem is therefore now reduced to finding out whether
the graphs of these two functions intersect. Plotting
these two graphs on the same axis on Theorist (or a
graphics calculator) and zooming in, one can immedi-
ately see that they do not intersect as shown in Figure 3.
(Note that one must zoom in close enough otherwise it
may appear as if they touch). Therefore the man will not
catch the bus. (An obvious follow up question is to ask
at what speed does he need to run 10 do so0).

The shortest distance to the bus can be found by

simply plotting the graph of y = %xz + 20 — Gx to see

that it obtains a minimum value whenx = 6 seconds and
Ymin = 2m (see Figure 4). One can even easily differen-

tiate y = %xz + 20 — & on Theorist and plot the graph

1o determine where it intersects the x-axis.

¥ T ¥ T ¥ T T
5455 58 6 62 64 HE

Figore 4

Notice that when using technology as in the above
example, it is certainly not a prerequisite that one already
knows quadratic theory in detail (e.g. meaning of dis-
criminant, coordinates of turning point, etc.). With com-
‘puter software and graphics calculators, one need there-
fore not wait until all the theory is adequately developed
before giving pupils realistic problems like these. (It is
assumed here that pupils have already done the modell-
ing of the relevant formulae s = vz and s = uz + 2at® in
science).This problem is also a good example of the
interesting applications that can be found not only in
science, but also in other school subjects like geography,
economics, accountancy, etc. We ought to stop teaching
mathematics in complete isolation from other subjects,
but also demonstrate its vatue across the curriculum.

Example 2
"A camper has a campsite in a large flat clearing
next to a straight river. He is at point A (200m from
the river and 570m from his tent), and his tent is at
point B (380m from the river). He sees a large spark
leap from his campfire and set his tent aflame. The
camper has an empty pail already in his hand. At
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Oistance(B o Line «) = 3.8 cm (1)
Cistance2 [0 A} = 3.7 cm

LengthiSegmam M) = 4.6 ¢m

LengthiSagment n) = 4.0 em
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DistancsiA o Line k) = 2.0 om

DHstancedH 1o Line K} = 3.8 cm (2)
Distance(B o A) = 5.7 om

Length{Segment m} = 1.8 em

Length{Ssgmant n) = 4.4 cin

4

 J

]
Langth({Sagmam n}+Length{Segment m) = 8.83 cm

Distance(A to Line k) = 2.0 em 3
Distancsi2 o LUne k) = 3.3 em ( )
Distance(B to A) = 5.7 em

Langth(Sagmaent m} = 2.7 cm

Langth(Saegmant n) = 5.2 em

4
¥

B
Lengthi{Segmant nl+Langth{Segment m) = 3.19 cm

Distanca{A to Line k) = 2.0 cm

Distanca{B ta Line k) = 3.0 cm (4)
Distance{B to A) = 5.7 cm
Langth{Segment m) = 2.3 e
Langth{Segment n} = 5.8 cm

b

B
LengthiSegmant n)+Length{Segmant m) = 7.94 cm

3

A\

B
Length{Ssgment nj+LangthiSegmant m} = 508 cm

Figure 5

what point E on the river should he fill his pail in
order to make the shortest possible path to pur out
the fire?"

This is a fairly well-known problem and is often formu-
lated in different ways. Using a dynamic geometry soft-
ware package like Sketchpad or Cabri one can easily
construct a dynamic model of the situation as shown in
Figure 5(1). By selecting and dragging point E from right
to left along the line one can see how the total distance
{rn + m) continuously decreases until it reaches a mini-
mum value of about 7,94 cm (794m) as shown in Figure
5(3), after which it starts increasing again. One could
then simply measure the distance of E to the perpendicu-
lar from A to the river, to determine where the camper
should fill his pail.

One could also further explore the solution by con-
tinnously measuring the angles between EB and the river
{£1), as well as the angle between EA and the river (£1),
1o find that the optimal solution is found when £i = £r.
Of course, this condition could then be explained in the
usual manner in terms of a reflection and that the shor-
test distance between two points is a straight line.

An algebraic approach to this problem would be to
first determine the distance FG which is the same as AD

= v 570% - 1807 = 540,83 (see Figure 6). Then setting
FE = x we need only minimize the function;

y =V 200% + 2% + v 380° + (540,83 — )
t0 obtain the desired solution. Again by using 2 com-
puter programme like Theorist (or a graphics calculator)
we can easily plot this graph as shown in Figure 7 and

I: . E - G
e 5"
200 200 -
A r? D
180
570
B
Figure 6
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zoom in to its turning point to read off its coordinates as
approximately (187;793). Or alternatively, we can simply
click the differentiation button on Theorist to differen-
tiate the function (it only takes about 2 seconds to do
this) and then plot its graph as shown in Figore 8. Again
by zooming in to where the graph of the differential
equation cuts the x-axis, we easily find the optimal solu-
tion when x = 186,49 using Theorist’s "Find Root"-fa-
cility.
Daclamations
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@)y = /2007 +5% +./380%+ (54083 -x

%lm ;
1200 ~

1000 -]

BN fmeweencens , ................... , ...........
afn oo ;..i ................... \ ...........

800 - : - ....... , ........... @

500 ¥ radians, and vice versa.
E—l : : : : : : m (E) Declarationg
g20 __..E ....... ' ....... ....... ....... “ """"""""""""
i : : : : : &y = q'.n'r'lfllf.lg-é-:x'.‘a4-,.}380"@(5«.10.83—.'al:‘}:"’
RIS i Og
?E,;I"----i ....... ....... { ....... ‘ . &iys _ —}C+540.83 N x
280 edoe b e J(—x+540.837+ 144400 /x2+40000
140, 160 180 300 220 240 ®y = - —~x+540.83 + X
Figure 7 J(—x+B40.83P+ 144400 Jx*+40000
v . .
Note that as before, with the availability of powerful o 5 .1- SRS FEUUPRTUVOTRNGL ORI e m
software such as Theorist, apart from knowing Pythago- i :
ras and having a good conceptual understanding of 0 : ] m
graphs and the meaning of differentiation, it is clearly no . : o : BB
longer a prerequisite to know the chain ruyle and to have ¥ o =
technicalproﬁciencyinapplying ittO be able tDSOlvea B e CRT T R R R L =
problem like this. : :
1000 000
Exampie 3 100 * ) ¥ [E‘
"Consider the same situation as in Example 2, but _Q_I . . . . : @
with a circular dam with radues 300m instead. If the : : ; : :
poi"tSA andB are respectiveb’ 500”1 and 680”1 0.5 __.,:1 ........... A .--":,-.--....,......?....,-“- ...-,; ............... g....
from the center of the dam, and the distance between : : : i EE
them is 560m, at what point E on the dam should ) _H_____’_______,__— T )
he now fill his pail in order to make the shortest g i : : : :
possible path to put out the fire?” 05 ke b s e s
Again using Sketchpad one can again easily construct a C ; i i j
dynamic mode] of the situation as shown in Figure 9. By 40 e 0 180 200 220
moving point E on the circumference of the circle, we  (0) () = 18649
obtain a minimum total distance of about 703m. By )y =0
moving at an angle of 29° in relation to AC he would ¥
therefore arrive at the desired position of E.
An algebraic approach could be 1o first determine! .
LC = arceos (560° - 5007 - 680%)/(—2.500.680) = 0,9441 Figure 8
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radians. If we let ZACE = x we need only express y =
AE + EB as a function of x and draw its graph as shown
in Figure 10 (zooming in to the appropriate domain). Or
alternatively, we can use Theorist to quickly differentiate
the function, and determine its intersection with the x
-axis which gives us x = 0.405 radians (= 23,18°) as the
optimal solution,

The chain rule and differentiation
of trigonometric functions are not
prerequisites for modelling

Again hote that neither the chain rule nor knowledge of
how to differentiate trigonometric functions are really
absolutely essential 1o solve this problem algebraically.
However, one needs to know that angles have to be
measured in radians and how to convert degrees into
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. Length(Segment )) = 5.60 cm

Length(Segment k) » 3.00 cm

Length{Segment m) = 5.00 cm

Length(Segment p) » 6.80 em

Length{Segment q) = 4.47 cm

Length{Segment p) = 2,56 cm

Length{Segment p)+Length(Segment q) = 7,03 em
Angle(CAE) = 29 *

Length{Segment j} = 5.60 cm
Length(Segment k) = 3,00 cm
Length(Segment m) = 5.00 cm
Length(Segment n} = 6,80 cm
Length(Segment q) = 3.86 cm
Length{8egment p) = 3.60 cm
Length(Segment p)+Length{Segment q) = 7.46 cm

Figure 9

@ Declarations

(@7 = /500%+ 300%-2 -500-300cos(x) + 6802+ 300%- 2-680-300 cos(0.944 1 - x)
3 ‘

O v | _

O B3 4 - _204000 sin(-x+0,9441) + 1B0000 sinfx)

% [ —~208000cos(-x+0.9441)+ 552400  — 300000 cos(x)+ 340000

gin(-x+0,0441) ginx)
+ 150000
J—208000 cos(—x + 0.944 1)+ 552400 J—-300000 cos()+ 340000

@)y = - 204000

IHEE P

o x 03/  oa 06 08
Olyx = 040454
[:]y’m 1387810717
A ;
H00
Y
600

Figore 10
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Example 4
“Suppose we want to build a railroad between two
towns A and B as shown in Figure 11. The ground
10 the east of line PQ is marshy and as a result it
costs R20 000 per km to build there, as opposed to
the R12 000 per km to the west of this line, If PQ is
200 km, where should X be chosen so that the
construction of therailroad is as cheap as possible?”

A

Figure 11

This problem, as well as the next one, have heen adapted
from Sawyer (1975:21-22). The above problem is a very
good one, as my students’ usual reaction have been to
think that the cheapest solution mnst be to go to Q, and
from there to B. (They clearly do notimmediately realize
that two opposing variables have 1o be simultaneously
minimized, namely, the distance in the marshy ground
versus the total distance), In fact, when 1 expressed

uncertainty and gently suggested carlier this year to a-

second year class that they should perhaps try some point
X further up the line PQ, say 50km from Q, one student
flatly refused, saying that it was obvious that route AQB
was the cheapest, and that he was not going to waste his
time to calculate that cost, Some of the students, how-
ever, were willing to calculate the distances using Pytha-
goras (or using a scale drawing) and consequently the
corresponding cost. Greatly to their surprise they found
that it was cheaper than route AQB! Eventually, these
students were able to convince the Doubting Thomas by
having him work through their calculations with them. I
then encouraged them to use "guess-and-check" to find
the optimal solutiomn.

With Skerchpad it is again quick and easy to construct
a dynamic model of the situation as shown in Figure 12
(Scale 1cm:50km) and by moving X up and down line PQ
the minimum cost of approximately R3 716 530 is ob-

GEMFOOD BAKERIES K KRITZIMGER MO, P11 F.&5-9

tained at about QX = 0,7 x 50 = 35 k. Algebraically,
we can set XQ = x and use Pythagoras to sef up a cost
equation as shown in Figure 13. Now we can either draw
this graph and zoom in to its minimum or differentiate
it with Theorist and then graph the differential equation
to obtain the minimum cost when x = 35,805km.

Length{Segment s} = 4.0 cm (PQ)
Length(Segment q) = 2.0 cm
Length(Segment r) = 1.2 cm
Length{Segment n} = 3.8 cm
Length{Segment p) = 1.4 cm
Length{Segment n)*1 2*50+
Length{Segment p)*20*50

= 3716.53 cm
Length(Segment t) = 0.7 cm

P

B

Figure 12
=) Declayations

~x+200 X
+20
AJ(=x+200)+ 10000 AfxB+3600
@y =-1 -x+200

0

2 +20 *
J{~xc200P+10000  ,fx2+380

il

s7 ¢ B2 250 3 .1 |2
ClD)x = 36.305
Oy’ =0
=

37045
37045
370d,4
3704 2
3704z

¥ ¥
35.6 4 358 36 6.2 964 366 308

Figure 13

Puthannras
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CQ=60km
DQ=B0km
Angle PQR=40

Figure 14

It is perhaps important to point out that some students
i in the class referred to the above, expressed great inter-
T est into how Theorist had managed to differentiate this
! cost-function. (They realized their matric knowledge
was inadequate). This then naturally led into a discus-
sion and presentation of the chain-rule in a subsequent
tutorial by one of the students who has had previous
teaching experience, Aurelius Mkhize (although this is
normally not dealt with in this course). In this sense,

GEMFOOD BAKERIES K KRITZIMGER
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there seems to be some potential in using symbolic
processing software in the so-called "black box" mode
where the purpose is the discovery and cxplanation of
how the programme works, (Another example would be
to first demonstrate, the factorisation of a quadratic
trinomial with such a programme, and then challenging
pupils afterwards to figure out how the programme had
done it).

Example 5
"Suppose a railroad has to be built between two
towns A and B, but a wedge of difficult ground, POR
. with LPQR = 40°, lies between them (see Figure

14). If the cost structure is the same as in the

DPrevious problem, what would be the cheapest route

for the railway 2"

This type of problem regularly occurs in practice, when
hilly country lies between towns. In this case, the extra
expense would be due to the need to excavate cuttings.

Using Sketchpad again as shown in Figure 15, it is
quick and easy to move X back and forth along line
segment PQ, and also Y along line segment RQ, until a
minimum cost of about R1 451 900 is obtained. The
corresponding distances XQ and YQ are then respec-
tively 50 km and 53 km, (Note that the cost along route
AZB would be about R1 784 200 - so the above solution
is a saving of about R332 300).

If we set XQ = x and YQ =y, it is not difficult to
arrive at an algebraic model as shown in Figure 16.
However, the cost fenction z is now unfortunately de-
pendant ontwo independent variables x andy. Neverthe-
less, by using Theorist’s 3D-graphing facility we can

Angle(PQR) = 40 *
Length(Segment r) = 2.0 em
Length(Segment t) = 3,0 om
%= Length(Segment v) = 6.0 ¢m
= Length(Segment w}= 8.0 am
Length(Segment m) = 2.2 ecm
Length(Segment n) = 3.5¢cm’
Length{Segment p) = 4,1 cm

XD~ Length(Segment x) = 5.0 cm
YO= Length(Segment y) = 5.3 cm

Scale Tcm: 10km

. 20*Length(Segment n)+1 2*{Length(Segment m)+Length(Segment p)) = 145.19 cm

Figure 15

40
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(@) 2 = 20 /x2+y®- 2xycos(0.698) + 12(,f200+ [60—x +/900+ [30-3*)

Figure 16

obtain a 3D graph (see Figure 16). By further rotating
the three dimensional surface to appropriate side views
(looking perpendicularly at the x — zand y - z planes) we
can obtain the required values forx andy as about 50 km.
Better accuracy can be obtained by zooming in more
closely as shown in Figure 17, and then rotating it appro-
priately. (Note how very jagged the apparently smooth
surface has become).

Concluding remarks

When the above problems were presented to my stu-
dents (including some post graduate HDE's), most of
them were completely at a loss of where 10 start (prob-
ably because they have never been exposed to modelling
before), so I first encouraged them to try and use scale
drawings or numerical and graphical approaches. The
tediousness (and often inaccuracy) of these methods
certainly made them greatly appreciative of the power of
technology when 1 finally demonstrated the above solu-
tions.

These problems also provided useful contexts for
discussing significant digits, rounding off, appropriate
choices of scale, as well as elementary ways of simplifying
a mathematical model. For example, in Example 4, ac-
curacy to 9 decimals is meaningless - an answer to the
nearest R100 (or even the nearest R1000) is probably
quite appropriate. The cost calculations in Figure 14 are
simplified by using 12 and 20 instead of 12 000 and 20
000, but one must then remember to multiply the final
(cost) answer by 1000, as well as by the scale factor of 10
(for the lengths of the line segmenis).

The above are only few examples of how much computer
(and calculator) 1echnology can help us during Step (2)
of the modelling process, and by their ability to do
routine manipulations quickly and easily, the human
mind is freed to be more creative. Other examples of
where computer software is becoming more and more
invaluable in a modelling context are: lincar and dy-
namic programming, matrices, curve fitting, transforma-
tions, integration, fractals, networks, etc.

Tt is therefore high time our school (and university)
curriculum wakes up from its pre-technology slumber,
and becomes mote relevant with respect to the increas-
ing technolization of society. By spending less time on
boring drill of highly complicated manipulative skills,
more time can be made available for modelling and
problem solving. It seems reasonable that pupils (and
students) today need to cover only the simpler cases of
manipulative and solution procedures to provide them
with an adequate understanding of computer-generated
results. ‘

_ With technology like this, it is furthermore much
easier to follow a spiral approach to the modelling of
certain problems in the curriculum. For example, one
could have the following approach to Example 3:

(a) Senior primary — use of dynamic geometry software.

and/or numerical approach using calculator

(b) Junior secondary — algebraic approach with plotting
of cost function by graphic calculator and/or com-
puter programme

(¢) Seniorsecondary —differentiation of cost function by
symbolic processor and plotiing of its graph.

Bhidhannarae
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(@) 2 = 20 f%+ g2 2xy00s0.698) + 12(,/200+ [60—x]? + 4500+ [RO-517)

I~ 1550

4 1450

[ = ]

Figure 17

Of course one could argue that many school children in
South Africa do not even have calculators, not even to
speak of graphic calculators and computers. So what
relevance do the arpuments presented here have for the
South African school situation?

Personally, I believe it is absolutely imperative that
our education authorities start addressing this situation
as a matter of great nrgency in the short term, firstly, by
providing all primary school children with calculators
(which are relatively cheap), and secondly, by providing
each secondary school with two or three OHP graphic
calculators, depending on the number of teachers and
classes. Thirdly, in the medium term, each secondaty
school ought to be supplied with 2L least one or two
computers which ¢an be used specifically for instruc-
tional purposes in mathematics.

Finally, in the long term, each secondary school pupil
ought to have a graphics calculator, and regular access
to a computer laboratory. Associated with this, radical
changes in evaluation, massive in-service training and
re-designing of pre-service courses are of course abso-
lutely essential.

Notes

The programmes referred to in the article are available

from:

(1) Geometer’s Sketchpad: Key Cuiriculum Press, 2512
Martin Luther King Jr. Way, Berkeley, CA 94704,
US.A. (Requirements: IBM, 4 Mb RAM, 386 CPU,
Windows 3 or Macintosh)

(2) Cabri Geomerre: Chartwell Bratt Lid., Old Orchard,
Bickley Rd, Bromley BR112ZNE, United Kingdom.
(Requirements: IBM XT or Macintosh).

(3) Theorist: Prescience Corporation, 939 Howard
Street, #302, San Francisco, CA 94103, U.S.A. (Re-
quirements: Macintosh).

Other programmes similar to the above, are Geometry

Inventor, Mathematica and MathCad.
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