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This paper will firstly explore some of the symmetries and 
transformations involved in border patterns and tessellations. This will 
be followed by some examples of problem solving with transformations. 
Lastly, we’ll explore some transformations of graphs of functions of the 
form y = f(x). 

Introduction 
The new national curriculum statement (Dept. of Ed., 2002a) specifically 
describes the following outcomes for the Senior Phase (Grades 7-9): 

* Use national flags to demonstrate transformations and symmetry in 
designs. 
* Investigate and appreciate the geometrical properties and patterns in 
traditional and modern architecture (e.g. construction and painting of 
Ndebele homes). 
* Use maps in geography as specific forms of grids. 
* Investigate geometric patterns in art (e.g. African and Islamic art). 

 
For the FET phase (Grades 10-12) the following outcomes are specified 
in the Guidelines for Learning Programmes (Dept. of Ed., 2002b): 
• develops conjectures and generalisations , related to triangles, 

quadrilaterals and other polygons, and attempts to validate, justify, 
explain or prove them, using any logical method (Euclidean, co-
ordinate and transformation) 

• generates as many graphs as necessary by means of point by point 
plotting to test  conjectures and hence generalise the effects of 
parameters on the graphs of functions 

Border patterns 
Border or frieze patterns are one dimensional, repeating patterns that are 
often used as decoration on the EDGES of garments, books, buildings, 
plates, rugs, etc. There are seven types of border patterns based on their 
symmetry properties of reflection, translation and rotation. 

The classification system normally used assigns to each border 
pattern a two letter/number code to label its type. By definition it is 
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assumed that when a border patterns is classified that it is viewed 
horizontally. The first letter or number signifies if there is vertical line 
symmetry or not, while the second letter or number signifies if the pattern 
has these additional symmetries horizontal line, horizontal glide 
reflection or half-turn symmetry or not. This table summarizes the two 
letter/number code scheme. 

First Code Letter Second Code Letter 
m = vertical symmetry m = horizontal symmetry 
1 = no vertical symmetry g = glide reflection sym, if no horizontal m 
 2 = half-turn symmetry, if no horizontal m or g 
 1 = no additional symmetry 
 

Examples (Zulu beadwork examples below are from Durban beachfront) 
11-pattern (called a ‘hop’ by John Conway) 
 
The three Heading Styles should be adequate to structure your paper. Please avoid 
numbering sections (as opposed to lists and footnotes). 

 

A 11-pattern only has translation symmetry. All border patterns have at 
least translation symmetry, which means that if it is translated some 
horizontal distance it will map onto itself. (Note that if we completely 
ignore the colours in the second example, it is classified as a 12-pattern.) 
 
m1-pattern (called a ‘sidle’ by John Conway) 
 
 
 

 
A m1-pattern has vertical line symmetries in addition to its translation 
symmetry. 
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(Note that if we completely ignore the colours in the second example, it is 
classified as a mg-pattern.) 
 
mm-pattern (called a ‘spinjump’ by John Conway) 
 
 
 

 
A mm-pattern has vertical and horizontal line symmetries in addition to 
its translation symmetry. (Note that in classifying the second example as 
mm above, the colours of the vertical lines were ignored, which gives the 
same classification as if all the colours are ignored. But with the colours 
of the vertical lines as given, it would actually be a 1m-pattern, because 
the colouring of the vertical lines does not have vertical line symmetry.) 
 
mg-pattern (called a ‘spinsidle’ by John Conway) 
 
 
 
 

 
A mg-pattern has vertical and horizontal glide reflection symmetries in 
addition to its translation symmetry. 
 
1m-pattern (called a ‘jump’ by John Conway) 
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A 1m-pattern has horizontal reflection symmetry in addition to its 
translation symmetry. 
 
1g-pattern (called a ‘step’ by John Conway) 
 
 
 
 
 
 
A 1g-pattern has horizontal glide reflection symmetry in addition to its 
translation symmetry. This is not a very common pattern in traditional 
African art. 
 
12-pattern (called a ‘spinhop’ by John Conway) 
 
 
 

 
A 12-pattern has half-turn symmetry in addition to its translation 
symmetry. (Note that if we completely ignore the colours in the second 
example, it is classified as a mg-pattern.) 

Tessellations 

A tessellation is created when a shape is repeated over and over again 
covering a plane without any gaps or overlaps. 

Another word for a tessellation is a tiling.  

A dictionary will tell you that the word "tessellate" means to form or 
arrange small squares in a checkered or mosaic pattern. The word 
"tessellate" is derived from the Ionic version of the Greek word 
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"tesseres," which in English means "four." The first tilings were made 
from square tiles. 

A regular polygon has 3 or 4 or 5 or more sides and angles, all equal. A 
regular tessellation means a tessellation made up of congruent regular 
polygons. [Remember: Regular means that the sides of the polygon are 
all the same length. Congruent means that the polygons that you put 
together are all the same size and shape.] 

Only three regular polygons tessellate in the Euclidean plane: triangles, 
squares or hexagons.We can't show the entire plane, but imagine that 
these are pieces taken from planes that have been tiled. Here are 
examples of  

a tessellation of triangles  
 

a tessellation of squares  
 

a tessellation of hexagons  
 

When you look at these three samples you can easily notice that the 
squares are lined up with each other while the triangles and hexagons are 
not. Also, if you look at 6 triangles at a time, they form a hexagon, so the 
tiling of triangles and the tiling of hexagons are similar and they cannot 
be formed by directly lining shapes up under each other - a slide (or a 
glide!) is involved. 

You can work out the interior measure of the angles for each of these 
polygons: 

Shape  

triangle 
square 
pentagon 
hexagon 
more than six sides 

     

Angle measure in degrees  

60 
90 

108 
120 

more than 120 degrees 

Since the regular polygons in a tessellation must fill the plane at each 
vertex, the interior angle must be an exact divisor of 360 degrees. This 
works for the triangle, square, and hexagon, and you can show working 
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tessellations for these figures. For all the others, the interior angles are 
not exact divisors of 360 degrees, and therefore those figures cannot tile 
the plane. 

Naming Conventions 

A tessellation of squares is named "4.4.4.4". Here's how: choose a vertex, 
and then look at one of the polygons that touches that vertex. How many 
sides does it have? 

Since it's a square, it has four sides, and that's where the first "4" comes 
from. Now keep going around the vertex in either direction, finding the 
number of sides of the polygons until you get back to the polygon you 
started with. How many polygons did you count? 

There are four polygons, and each has four sides. 

 

For a tessellation of regular congruent hexagons, if you choose a vertex 
and count the sides of the polygons that touch it, you'll see that there are 
three polygons and each has six sides, so this tessellation is called 
"6.6.6":  

 

A tessellation of triangles has six polygons surrounding a vertex, and 
each of them has three sides: "3.3.3.3.3.3". 

 

Semi-regular Tessellations 

You can also use a variety of regular polygons to make semi-regular 
tessellations. A semi-regular tessellation has two properties, which are: 
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1. It is formed by regular polygons.  
2. The arrangement of polygons at every vertex point is identical.  

Here are the eight semi-regular tessellations: 

     

     

   

 

Interestingly there are other combinations that seem like they should tile 
the plane because the arrangements of the regular polygons fill the space 
around a point. For example: 

     

Task 1: If you try tiling the plane with these units of tessellation you will 
find that they cannot be extended infinitely. Fun is to try this yourself. 

1. Hold down on one of the images and copy it to the clipboard.  
2. Open a paint program.  
3. Paste the image.  
4. Now continue to paste and position and see if you can tessellate it.  

Task 2: Explore the symmetries (translation, reflection, glide reflection & 
rotation) of the regular and semi-regular tessellations. How are they the 
same or different? 
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Note: There are an infinite number of tessellations that can be made of 
patterns that do not have the same combination of angles at every vertex 
point. There are also tessellations made of polygons that do not share 
common edges and vertices.  

Problem Solving with Transformations 

Many real world problems can be easily modeled with Sketchpad and 
elegantly solved by using transformations such as reflections, translations 
and rotations. Below are some examples that will be briefly discussed. 

The Burning House Problem 

A man is walking in an open field some distance from his house.  It’s a 
beautiful day and he is carrying an empty bucket with him to collect 
berries.  Before long, he turns around and, to his horror, sees that his 
house on fire.  Without wasting a moment, he runs to a nearby river 
(which runs in a straight line from east to west) to fill the bucket with 
water so that he can run to his house to throw water on the fire.  
Naturally, he wants to do this as quickly as possible.  Describe how to 
construct the point on the river bank to which he should run in order to 
minimize his total running distance (and time) 

Horse Riding 
A rider is traveling from point D to point E between a river and a pasture. 
Before she gets to E, she wants to stop at the pasture to feed her horse, 
and again at the river to water him. If angle BAC = 45°, EJ = 2 km, AJ = 
5 km, DK = 7 km and JK = 10 km, what path should she take to travel the 
shortest possible distance? 
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Building Bridges 
The following two problems are from Makae et al (2001). 

1. At what point should a bridge MN be built across a river separating 
two towns A and B so that the path AMNB is as short as possible? 
(It is assumed the river consists of two parallel lines with the 
bridge perpendicular to it. 

2. Solve the same problem as in Question 1 if the towns A and B are 
separated by two rivers across which bridges PQ and RS have to be 
constructed (see above). 

 

A

M

N

B

6 km

1 km Bridge

8 km 4 km
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Building an airport 
The following problem is from De Villiers 
(2003). 

Suppose an airport is planned to service three 
cities of more or less equal size. The planners 
decide to locate the airport so that the sum of 
the distances to the three cities is a minimum. 
Where should the airport be located? 
 
 
Transformations of y = f(x) 
As discussed in De Villiers (1991), the study of transformations forms a 
golden thread linking together many diverse parts of the mathematics 
curriculum, and beautifully connects geometry with algebra. Particularly 
interesting and relevant is to investigate different transformations of 
functions of the type y = f(x) with a dynamic tool like Sketchpad. 
 Essentially, there are two different, though related questions one 
could explore: 

(1) How can we transform a function y = f(x) in a particular way? 
(For example, how can we reflect it around the y-axis?) 

(2) What happens if we transform y = f(x) in a particular way? (For 
example, what happens to y = f(x) with the transformation g(x) 
= f(x) + b?) 

 
We shall use the Sketchpad sketch below to find transformations of y = 
f(x) for each of the following transformations: 

A B

C

D

DC = 2.006 cm
DB = 1.663 cm
DA = 2.653 cm
DC + DB + DA = 6.321 cm

 

 

B
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Q
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Reflection in x- and y-axes 
Reflection in y = x 
Half-turn around origin 
Enlargement from origin 
Stretch in x- and y-directions 
 
It should be noted that in exploring and finding such transformations that 
one should not (just) use straight-line graphs as these can easily lead to 
incorrect generalizations, but use sufficiently general or a variety of 
functions.  
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