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1. Introduction (Van Aubel’s theorem)

Consider an arbitrary Quadrilateral ABCD, the quadrilateral S1S2S3S4 formed by joining the four corresponding
centers S1,S2,S3,S4 of the squares thus constructed on each side of ABCD is an iso-ortho diagonal quadrilateral [6].
That is S1S3 = S2S4 and S1S3⊥S2S4. From Fig. 1 it is clear S1S3 = S2S4 and S1S3⊥S2S4.

Fig. 1.
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The theorem we just stated above is attributed to Van Aubel (Von Aubel in [Gardner, p. 176-178]) could also be
found in their work de Villiers, Yaglom, Finney among others.

In this article, we study the properties of the lines S1S3and S2S4when the squares are replaced with equilateral
triangles and isosceles triangles, our present study about the special case of Van Aubel’s theorem when the squares
are replaced with equilateral triangles and further generalization is not actually new, since some of the authors studied
about this earlier in 90’s ( can be found in [4, 5, 7–10]). Even though it is not a new study and the results presented
in this article seems to be very elementary but are quite new and interesting. In this short note we also study about a
point named as Van Aubel’s point, its geometrical(ruler and compass) construction, its location in general case, and
few more generalizations of van Aubel’s theorem associated with Kiepert hyperbola.

2. Preliminaries

We use the following lemmas in proving the results.

Lemma 2.1.
If A(x1, y1),B(x2, y2) are the two vertices of an arbitrary triangle ABC whose base angles are A and B then the coordinates
of third vertex C (x3, y3) is given by(

(x1 tan A+x2 tanB)± tan A tanB
(
y1 − y2

)
tan A+ tanB

,

(
y1 tan A+ y2 tanB

)∓ tan A tanB (x1 −x2)

tan A+ tanB

)
or(

(x1 cotB +x2 cot A)± (
y1 − y2

)
cot A+cotB

,

(
y1 cotB + y2 cot A

)∓ (x1 −x2)

cot A+cotB

)

Proof. Consider

Λ(cot A+cotB) = det

 x1 y1 1
x2 y2 1

(x1 cotB +x2 cot A)± (
y1 − y2

) (
y1 cotB + y2 cot A

)∓ (x1 −x2) (cot A+cotB)


By doing row operation on R3 using R1 and R2, we get

Λ(cot A+cotB) =
∣∣∣∣∣∣

x1 y1 1
x2 y2 1

±(
y1 − y2

) ∓ (x1 −x2) 0

∣∣∣∣∣∣
Which implies

{Λ(cot A+cotB)} =±
[

(x1 −x2)2 + (
y1 − y2

)2
]
=±AB 2 6= 0

We have area of triangle ABC =∆

= 1

2

∣∣∣∣∣∣∣det

 x1 y1 1
x2 y2 1

(x1 cotB+x2 cot A)±(y1−y2)
cot A+cotB

(y1 cotB+y2 cot A)∓(x1−x2)
cot A+cotB 1


∣∣∣∣∣∣∣

= 1

2

∣∣∣∣∣∣ 1

cot A+cotB
det

 x1 y1 1
x2 y2 1

(x1 cotB +x2 cot A)± (
y1 − y2

) (
y1 cotB + y2 cot A

)∓ (x1 −x2) cot A+cotB

∣∣∣∣∣∣
= 1

2

∣∣∣∣ 1

cot A+cotB
{Λ(cot A+cotB)}

∣∣∣∣
= 1

2

∣∣∣∣ 1

cot A+cotB
(±AB 2)

∣∣∣∣
= AB 2

2|cot A+cotB | 6= 0 (since cot A+cotB 6= 0)

It proves that area of triangle ABC is not equal to zero, which means that there is a triangle with A ,B and C as vertices.
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Now let us prove that base angles of triangle ABC are A and B , if the third vertex either C or C 1, where

C =
(

(x1 cotB +x2 cot A)+ (y1 − y2)

cot A+cotB
,

(y1 cotB + y2 cot A)− (x1 −x2)

cot A+cotB

)
and

C 1 =
(

(x1 cotB +x2 cot A)− (y1 − y2)

cot A+cotB
,

(y1 cotB + y2 cot A)+ (x1 −x2)

cot A+cotB

)
Clearly the midpoint D of C ,C 1 lies on the line AB (since C 1 is the image of C with respect to the base AB of triangle
ABC ) its coordinate is given by,

D =
(

(x1 cotB +x2 cot A)

(cot A+cotB)
,

(y1 cotB + y2 cot A)

(cot A+cotB)

)
And also D divides AB in the ratio given by

AD

DB
= cot A

cotB

Hence

AD = AB cot A

cot A+cotB
, DB = AB cotB

cot A+cotB
,

Now

C D =C D ′ = 2∆

AB
= AB

|cot A+cotB |
(
Since C D,C D1 are the heights of the triangle ABC , triangle ABC 1)

hence

C D

AD
= C D ′

AD
= tan A ,

C D

DB
= C D ′

DB
= tanB

This proves that the base angles are A and B.

Note: 2.1 is true even if one of the angles either A or B is right angle.

Proof. We start with A = 90o , So, By considering the point C given in the 2.1, we have to prove that C Aand AB are

perpendicular to each other and t anB = C A

AB
.

As we have angle A = 900, so cot A = 0 and cotB 6= 0. Hence

C =
(

(x1 cotB)+ (y1 − y2)

cotB
,

(y1 cotB)− (x1 −x2)

cotB

)

Slope of the line C A = −
(

(x1−x2)
(y1−y2)

)
, Slope of the line AB =

(
(y1−y2)
(x1−x2)

)
. It is clear that (slope of C A) (slope of AB)= −1,

Hence C A⊥AB

C A

AB
= 1

AB

(√( y1 − y2

cotB

)2
+

( x1 −x2

cotB

)2
)
= 1

AB

√(
AB

cotB

)2

= tanB

This Proves that the point C so defined as in the statement of the lemma is, in fact, the third vertex of the triangle ABC ,
when A = 900. A nalogously, it is shown for C 1, the same occurs when B = 900.
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Corollary 2.1.
If ang l e A = ang l eB = θ that is triangle ABC is an isosceles triangle, then the coordinates of C are given by(

(x1 +x2)± tanθ
(
y1 − y2

)
2

,

(
y1 + y2

)∓ tanθ (x1 −x2)

2

)

Corollary 2.2.
If A = B = 60o that is triangleABC is an equilateral triangle, then the coordinates of C are given by(

(x1 +x2)±p
3
(
y1 − y2

)
2

,

(
y1 + y2

)∓p
3(x1 −x2)

2

)

Lemma 2.2.
If A(x1, y1),B(x2, y2),C (x3, y3) are the three vertices of an arbitrary triangle ABC then the coordinates of its circum center
are given by(

x1 sin2A+x2 sin2B +x3 sin2C

sin2A+ sin2B + sin2C
,

y1 sin2A+ y2 sin2B + y3 sin2C

sin2A+ sin2B + sin2C

)
where A,B ,C are the angles of the triangle.

Corollary 2.3.
The coordinates of the circum center of an isosceles triangle whose vertices are A(x1, y1),B(x2, y2)

and C

(
(x1 +x2)± tanθ

(
y1 − y2

)
2

,

(
y1 + y2

)∓ tanθ (x1 −x2)

2

)
Where θ is the base angle are given by(

(x1 +x2)∓cot2θ
(
y1 − y2

)
2

,

(
y1 + y2

)±cot2θ (x1 −x2)

2

)
.

Lemma 2.3.
If (x1, y1), (x2, y2), (x3, y3) are the three vertices of an equilateral triangle then the coordinates of its center are given by( x1 +x2 +x3

3
,

y1 + y2 + y3

3

)
.

Corollary 2.4.
The coordinates of the center of an equilateral triangle whose vertices are (x1, y1), (x2, y2) and(

(x1+x2)±p3(y1−y2)
2 , (y1+y2)∓

p
3(x1−x2)

2

)
are given by

(
y1−y2+

p
3(x1+x2)

2
p

3
, x2−x1+

p
3(y1+y2)

2
p

3

)

3. Main results

Theorem 3.1.
If S1,S2,S3S4 are the centers of the equilateral triangles ∆ABP,∆BCQ,∆C DR,∆D AT are constructed which lie entirely
out wards on the sides AB = a,BC = b,C D = c and AD = d of an arbitrary quadrilateral ABC D respectively then the
lines PR, QS are respectively perpendicular to the lines S2S4,S1S3 . That is S1S3⊥QT , S2S4⊥PR. [3]

Proof. With out loss of generality let us consider the coordinates of vertices of the quadrilateral ABC D as A =
(x1, y1),B = (x2, y2),C = (x3, y3) and D = (x4, y4). Then using 2.2, we have

P =
(

(x1 +x2)+p
3
(
y1 − y2

)
2

,

(
y1 + y2

)−p
3(x1 −x2)

2

)
and

Q =
(

(x2 +x3)+p
3
(
y2 − y3

)
2

,

(
y2 + y3

)−p
3(x2 −x3)

2

)

R =
(

(x3 +x4)+p
3
(
y3 − y4

)
2

,

(
y3 + y4

)−p
3(x3 −x4)

2

)

T =
(

(x4 +x1)+p
3
(
y4 − y1

)
2

,

(
y4 + y1

)−p
3(x4 −x1)

2

)
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Fig. 2.

From Fig. 2, it is clear S1S3⊥QT
and S2S4⊥PR, and it is clear that

S1 = A+B +P

3
=

(
y1 − y2 +

p
3(x1 +x2)

2
p

3
,

x2 −x1 +
p

3(y1 + y2)

2
p

3

)

S2 = B +C +Q

3
=

(
y2 − y3 +

p
3(x2 +x3)

2
p

3
,

x3 −x2 +
p

3(y2 + y3)

2
p

3

)

S3 = C +D +R

3
=

(
y3 − y4 +

p
3(x3 +x4)

2
p

3
,

x4 −x3 +
p

3(y3 + y4)

2
p

3

)

S4 = D + A+T

3
=

(
y4 − y1 +

p
3(x4 +x1)

2
p

3
,

x1 −x4 +
p

3(y4 + y1)

2
p

3

)
So,

Slope of the line PR =
((

y1 + y2 − y3 − y4
)+p

3(x2 +x3 −x4 −x1)

(x1 +x2 −x3 −x4)−p
3(y2 + y3 − y4 − y1)

)

Slope of the line QT =
((

y2 + y3 − y4 − y1
)+p

3(x3 +x4 −x1 −x2)

(x2 +x3 −x4 −x1)−p
3(y3 + y4 − y1 − y2)

)

Slope of the line S2S4 =−
(

(x1 +x2 −x3 −x4)−p
3(y2 + y3 − y4 − y1)(

y1 + y2 − y3 − y4
)+p

3(x2 +x3 −x4 −x1)

)

Slope of the line S1S3 =−
(

(x2 +x3 −x4 −x1)−p
3(y3 + y4 − y1 − y2)(

y2 + y3 − y4 − y1
)+p

3(x3 +x4 −x1 −x2)

)
Now it is clear that (slope of PR) (slope of S2S4) =−1 = (slope of QT ) (slope of S1S3).
Hence S1S3⊥QT, S2S4⊥PR

Theorem 3.2.
If S′

1 , S′
2 , S′

3 and S′
4 are the centers of the equilateral triangles∆ABP ′,∆BCQ ′,∆C DR ′,∆D AT ′are constructed which lie

entirely inwards on the sides AB = a, BC = b, CD = c and AD = d of an arbitrary quadrilateral ABCD respectively then the
lines P ′R ′, Q ′T ′ are respectively perpendicular to the linesS′

2 S′
4 and S′

1 S′
3 . That is S′

1S′
3⊥Q ′T ′, S′

2S′
4⊥P ′R ′.
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Proof. Without loss of generality let us consider the coordinates of vertices of the quadrilateral ABC D as A =
(x1, y1),B = (x2, y2),C = (x3, y3) and D = (x4, y4). Then using 2.2, we have

P ′ =
(

(x1 +x2)−p
3
(
y1 − y2

)
2

,

(
y1 + y2

)+p
3(x1 −x2)

2

)

Q ′ =
(

(x2 +x3)−p
3
(
y2 − y3

)
2

,

(
y2 + y3

)+p
3(x2 −x3)

2

)

R ′ =
(

(x3 +x4)−p
3
(
y3 − y4

)
2

,

(
y3 + y4

)+p
3(x3 −x4)

2

)

T ′ =
(

(x4 +x1)−p
3
(
y4 − y1

)
2

,

(
y4 + y1

)+p
3(x4 −x1)

2

)

And it is clear that

S′
1 = B +C +Q ′

3
=

(
y2 − y1 +

p
3(x1 +x2)

2
p

3
,

x1 −x2 +
p

3(y1 + y2)

2
p

3

)
,

S′
2 = C +D +R ′

3
=

(
y3 − y2 +

p
3(x2 +x3)

2
p

3
,

x2 −x3 +
p

3(y2 + y3)

2
p

3

)
,

S′
3 = C +D +R ′

3
=

(
y4 − y3 +

p
3(x3 +x4)

2
p

3
,

x3 −x4 +
p

3(y3 + y4)

2
p

3

)
,

S′
4 = D + A+T ′

3
=

(
y1 − y4 +

p
3(x4 +x1)

2
p

3
,

x4 −x1 +
p

3(y4 + y1)

2
p

3

)

So,

Slope of the line P ′R ′ =
((

y1 + y2 − y3 − y4
)−p

3(x2 +x3 −x4 −x1)

(x1 +x2 −x3 −x4)+p
3(y2 + y3 − y4 − y1)

)

Slope of the line QT ′ =
((

y2 + y3 − y4 − y1
)−p

3(x3 +x4 −x1 −x2)

(x2 +x3 −x4 −x1)+p
3(y3 + y4 − y1 − y2)

)

Slope of the line S′
2S′

4 =−
(

(x1 +x2 −x3 −x4)+p
3(y2 + y3 − y4 − y1)(

y1 + y2 − y3 − y4
)−p

3(x2 +x3 −x4 −x1)

)

Slope of the line S′
1S′

3 =−
(

(x2 +x3 −x4 −x1)+p
3(y3 + y4 − y1 − y2)(

y2 + y3 − y4 − y1
)−p

3(x3 +x4 −x1 −x2)

)

Now it is clear that (slope of P ′R ′) (slope of S′
2S′

4) =−1 = (slope of Q ′T ′) (slope of S′
1S′

3). Hence S′
1S′

3⊥Q ′T ′,S′
2S′

4⊥P ′R ′.

Theorem 3.3.
Let V1,V2,V3 and V4 are the points of intersection of the lines PR, QT, S1S3 and S2S4 then the four points V1,V2,V3 and
V4 are concyclic (see Fig. 3).

Proof. From Theorem 3.1, it is clear that V1V2⊥V2V3 and V3V4⊥V4V1. Hence the four points V1,V2,V3 and V4 are
concyclic which completes the proof of the Theorem 3.3.

Theorem 3.4.
Let V ′

1,V ′
2,V ′

3 and V ′
4 are the points of intersection of the lines P’R’, Q’T’, S′

1S′
3 and S′

2S′
4 then the four points V ′

1,V ′
2,V ′

3 and
V ′

4 are concyclic (see Fig. 4).

Proof. From Theorem 3.2, it is clear that V ′
1V ′

2⊥V ′
2V ′

3 and V ′
3V ′

4⊥V ′
4V ′

1. Hence the four points V ′
1,V ′

2,V ′
3 and V ′

4 are
concyclic which completes the proof of the Theorem 3.4.
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Fig. 3.

Fig. 4.

Theorem 3.5.
The quadrilaterals PQ’RT’, P’QR’T, S1S′

2S3S′
4 and S′

1S2S′
3S4 are parallelograms.

Proof. To prove the quadrilateral PQ ′RT ′,P ′QR ′T,S1S′
2S3S′

4,S′
1S2S′

3S4 are parallelograms, It is enough to prove that
diagonals bisect each other. It is clear that
The mid point of PR = The mid point of Q ′T ′ =

M1 =
(

(x1 +x2 +x3 +x4)+p
3
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)−p
3(x1 −x2 +x3 −x4)

4

)
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The mid point of QT = The mid point of P ′R ′ =

M2 =
(

(x1 +x2 +x3 +x4)−p
3
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)+p
3(x1 −x2 +x3 −x4)

4

)

The mid point of S1S3 = The mid point of S′
2S′

4 =

M3 =
((

y1 − y2 + y3 − y4
)+p

3(x1 +x2 +x3 +x4)

4
p

3
,
− (x1 −x2 +x3 −x4)+p

3
(
y1 + y2 + y3 + y4

)
4
p

3

)

The mid point of S2S4 = The mid point of S′
1S′

3 =

M4 =
(
−(

y1 − y2 + y3 − y4
)+p

3(x1 +x2 +x3 +x4)

4
p

3
,

(x1 −x2 +x3 −x4)+p
3
(
y1 + y2 + y3 + y4

)
4
p

3

)

Hence, Theorem 3.5 is proved.

Theorem 3.6.
Let M1, M2, M3, M4 are the point of intersections of the diagonals of the parallelograms PQ’RT’, P’QR’T, S1S′

2S3S′
4 and

S′
1S2S′

3S4 respectively then M1, M2, M3, M4 are collinear, and they lies on the line (for recognisation sake let us call this
line as van aubel’s line ) given by

4(x1 −x2 +x3 −x4)x +4(y1 − y2 + y3 − y4)y = (x1 +x3)2 − (x2 +x4)2 + (
y1 + y3

)2 − (
y2 + y4

)2

Proof. Consider λ= x1 +x2 +x3 +x4, β= y1 + y2 + y3 + y4, γ= x1 −x2 +x3 −x4 and δ= y1 − y2 + y3 − y4. So

M1 =
(

(x1 +x2 +x3 +x4)+p
3
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)−p
3(x1 −x2 +x3 −x4)

4

)
=

(
λ+p

3δ

4
,
β−p

3γ

4

)

M2 =
(

(x1 +x2 +x3 +x4)−p
3
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)+p
3(x1 −x2 +x3 −x4)

4

)
=

(
λ−p

3δ

4
,
β+p

3γ

4

)

M3 =
((

y1 − y2 + y3 − y4
)+p

3(x1 +x2 +x3 +x4)

4
p

3
,
− (x1 −x2 +x3 −x4)+p

3
(
y1 + y2 + y3 + y4

)
4
p

3

)
=

(
δ+p

3λ

4
p

3
,
−γ+p

3β

4
p

3

)

and

M4 =
(
−(

y1 − y2 + y3 − y4
)+p

3(x1 +x2 +x3 +x4)

4
p

3
,

(x1 −x2 +x3 −x4)+p
3
(
y1 + y2 + y3 + y4

)
4
p

3

)
=

(
−δ+p

3λ

4
p

3
,
γ+p

3β

4
p

3

)

Consider a line

4γx + 4δy = λγ+βδ (1)

Clearly the four points M1, M2, M3 and M4 lies on this line (1). Hence the four points M1, M2, M3 and M4 are collinear.
The line through these points is 4γx + 4δy = λγ+βδ. That is

4(x1 −x2 +x3 −x4)x +4(y1 − y2 + y3 − y4)y = (x1 +x3)2 − (x2 +x4)2 + (
y1 + y3

)2 − (
y2 + y4

)2

Remark 3.1.

1. It is clear that the Mid Point of M1M2 = the Mid Point of M3M4 = M =
(
λ
4 , β4

)
= ( x1+x2+x3+x4

4 , y1+y2+y3+y4
4

)
.

2. The point M is also the point of intersection of diagonals of the parallelograms formed by joining the midpoints
of the quadrilaterals PQRS and P ′Q ′R ′S′.

3. For recognization sake, let us call the point M as Van Aubel’s point of the quadrilateral ABC D . (The point M
acts as midpoint of the diagonals for any arbitrary parallelogram, rectangle, rhombus, square)



38 A note on special cases of Van Aubel’s theorem

Fig. 5.

4. Using Theorem 3.5 and Theorem 3.6, it can also be stated as

The midpoints of PR (M1) ,S1S3 (M3) ,QT (M2) ,S2S4 (M4) are collinear and M is the midpoint of M1M2 and
M3M4.

In the similar manner, the midpoints of P ′R ′ (M2) ,S′
1S′

3 (M4) ,Q ′T ′ (M1) ,S′
2S′

4 (M3) are collinear and M is the
midpoint of M1M2 and M3M4

5. Using Theorem 3.5 and Theorem 3.6, we can see how to locate the point M using only ruler and compass,

If some arbitrary quadrilateral ABC D is given, construct the equilateral triangles on the sides either inside or
outside, Let P,Q,R,T be its affix vertices, locate the midpoints of the sides of quadrilateral PQRT, then the point
of intersection of the diagonals of quadrilateral formed by the midpoints of sides of PQRT is required M . (see
Fig. 5)

6. If I1, I2, I3, I4 and O1,O2,O3,O4 and G1,G2,G3,G4 are incentres, circumcenters and centroids of the triangles
AB M ,BC M ,C DM and D AM respectively then the sets {I1, I2, I3, I4} and {O1,O2,O3,O4}and {G1,G2,G3,G4} are
con cyclic when ABC D is kite or square. The orthocenters H1, H2, H3, H4 of the triangles AB M ,BC M ,C DM and
D AM are collinear when ABC D is kite and coincides with M when ABC D is square (see Fig. 6).

3.1. Generalizations

Theorem 3.7.
If S1,S2,S3,S4 are the circumcenters of the isosceles triangles ∆ABP, ∆BCQ, ∆C DR, ∆D AT whose base angle is θ con-
structed entirely out wards on the sides of quadrilateral ABCD Then

(a) The midpoints of PR (M1) , S1S3 (M3) , QT (M2) , S2S4 (M4)are collinear and lie on the van Aubel’s line given by
4(x1 −x2 +x3 −x4)x +4(y1 − y2 + y3 − y4)y = (x1 +x3)2 − (x2 +x4)2 + (

y1 + y3
)2 − (

y2 + y4
)2

(b) Van Aubel’s point (M) is the midpoint of M1M2 and M3M4 (see figure-7)

Proof. We have by 2.1, the coordinates of P,Q,R,S are given by

P =
(

(x1 +x2)+ tanθ
(
y1 − y2

)
2

,

(
y1 + y2

)− tanθ (x1 −x2)

2

)
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Fig. 6.

Q =
(

(x2 +x3)+ tanθ
(
y2 − y3

)
2

,

(
y2 + y3

)− tanθ (x2 −x3)

2

)

R =
(

(x3 +x4)+ tanθ
(
y3 − y4

)
2

,

(
y3 + y4

)− tanθ (x3 −x4)

2

)

T =
(

(x4 +x1)+ tanθ
(
y4 − y1

)
2

,

(
y4 + y1

)− tanθ (x4 −x1)

2

)
And using 2.2, the circumcenters S1,S2,S3 and S4 are given by

S1 =
(

(x1 +x2)−cot2θ
(
y1 − y2

)
2

,

(
y1 + y2

)+cot2θ (x1 −x2)

2

)

S2 =
(

(x2 +x3)−cot2θ
(
y2 − y3

)
2

,

(
y2 + y3

)+cot2θ (x2 −x3)

2

)

S3 =
(

(x3 +x4)−cot2θ
(
y3 − y4

)
2

,

(
y3 + y4

)+cot2θ (x3 −x4)

2

)

S4 =
(

(x4 +x1)−cot2θ
(
y4 − y1

)
2

,

(
y4 + y1

)+cot2θ (x4 −x1)

2

)
The mid point of PR

M1 =
(

(x1 +x2 +x3 +x4)+ tanθ
(

y1 − y2 + y3 − y4
)

4
,

(
y1 + y2 + y3 + y4

)− tanθ ( x1 −x2 +x3 −x4)

4

)
The mid point of QT

M2 =
(

(x1 +x2 +x3 +x4)− tanθ
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)+ tanθ (x1 −x2 +x3 −x4)

4

)
The mid point of S1S3

M3 =
(

(x1 +x2 +x3 +x4)−cot2θ
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)+cot2θ (x1 +x2 +x3 +x4)

4

)
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Fig. 7.

The mid point of S2S4

M4 =
(

(x1 +x2 +x3 +x4)+cot2θ
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)−cot2θ (x1 +x2 +x3 +x4)

4

)
Hence

M = The Midpoint of M ′
1M ′

2 = The Mid point of M ′
3M ′

4 =
( x1 +x2 +x3 +x4

4
,

y1 + y2 + y3 + y4

4

)
Hence (b) is proved.
Now to prove (a), consider λ= x1 +x2 +x3 +x4, β= y1 + y2 + y3 + y4, γ= x1 −x2 +x3 −x4 and δ= y1 − y2 + y3 − y4, then

M1 =
(
λ+ tanθδ

4
,
β− tanθγ

4

)

M2 =
(
λ− tanθδ

4
,
β+ tanθγ

4

)

M3 =
(
λ−cot2θδ

4
,
β+cot2θγ

4

)
and

M4 =
(
λ+cot2θδ

4
,
β−cot2θγ

4

)
Consider a line

4γx +4δy =λγ+βδ (2)

Clearly, the four points M 1, M 2, M 3 and M 4 lies on this line (2).
Hence, the four points M 1, M 2, M 3 and M 4 are collinear.
From Theorem 3.7, Clearly the line (2) is Van Aubel’s line (L). Its equation is given by

4(x1 −x2 +x3 −x4)x +4(y1 − y2 + y3 − y4)y = (x1 +x3)2 − (x2 +x4)2 + (
y1 + y3

)2 − (
y2 + y4

)2
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Theorem 3.8.
If S′

1,S′
2,S′

3S′
4 are the circumcenters of an isosceles triangles ∆ABP ′,∆BCQ ′,∆C DR ′,∆D AT ′ whose base angle is θ′, con-

structed entirely inwards on the sides of quadrilateral ABCD. Then

(a) The midpoints of P ′R ′ (M ′
1

)
,S′

1S′
3

(
M ′

3

)
,Q ′T ′ (M ′

2

)
,S′

2S′
4

(
M ′

4

)
are collinear and lies on the Van Aubel’s Line (L)

(b) Van Aubel’s point (M) is the midpoint of M ′
1M ′

2 and M ′
3M ′

4

Proof. We have by 2.1, the coordinates of P ′,Q ′,R ′,T ′ are given by

P ′ =
(

(x1 +x2)− tanθ′
(
y1 − y2

)
2

,

(
y1 + y2

)+ tanθ′ (x1 −x2)

2

)

Q ′ =
(

(x2 +x3)− tanθ′
(
y2 − y3

)
2

,

(
y2 + y3

)+ tanθ′ (x2 −x3)

2

)

R ′ =
(

(x3 +x4)− tanθ′
(
y3 − y4

)
2

,

(
y3 + y4

)+ tanθ′ (x3 −x4)

2

)

T ′ =
(

(x4 +x1)− tanθ′
(
y4 − y1

)
2

,

(
y4 + y1

)+ tanθ′ (x4 −x1)

2

)
And using 2.3, the circumcenters S′

1,S′
2,S′

3 and S′
4 are given by

S′
1 =

(
(x1 +x2)+cot2θ′

(
y1 − y2

)
2

,

(
y1 + y2

)−cot2θ′ (x1 −x2)

2

)

S′
2 =

(
(x2 +x3)+cot2θ′

(
y2 − y3

)
2

,

(
y2 + y3

)−cot2θ′ (x2 −x3)

2

)

S′
3 =

(
(x3 +x4)+cot2θ′

(
y3 − y4

)
2

,

(
y3 + y4

)−cot2θ′ (x3 −x4)

2

)

S′
4 =

(
(x4 +x1)+cot2θ′

(
y4 − y1

)
2

,

(
y4 + y1

)−cot2θ′ (x4 −x1)

2

)
The mid point of P ′R ′ =

M ′
1 =

(
(x1 +x2 +x3 +x4)− tanθ′

(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)+ tanθ′ ( x1 −x2 +x3 −x4)

4

)
The mid point of Q ′T ′ =

M ′
2 =

(
(x1 +x2 +x3 +x4)+ tanθ′

(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)− tanθ′ (x1 −x2 +x3 −x4)

4

)
The mid point of S′

1S′
3 =

M ′
3 =

(
(x1 +x2 +x3 +x4)+cot2θ′

(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)−cot2θ′ (x1 +x2 +x3 +x4)

4

)
The mid point of S′

2S′
4 =

M ′
4 =

(
(x1 +x2 +x3 +x4)−cot2θ′

(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)+cot2θ′ (x1 +x2 +x3 +x4)

4

)
Hence M = The Midpoint of M ′

1M ′
2 = The Mid point of M ′

3M ′
4

=
( x1 +x2 +x3 +x4

4
,

y1 + y2 + y3 + y4

4

)
Hence (b) is proved.
Now to prove (a), Consider λ= x1+x2+x3+x4, β= y1+ y2+ y3+ y4, γ= x1−x2+x3−x4 and δ= y1− y2+ y3− y4. Then

M ′
1 =

(
λ− tanθ′δ

4
,
β+ tanθ′γ

4

)

M ′
2 =

(
λ+ tanθ′δ

4
,
β− tanθ′γ

4

)
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M ′
3 =

(
λ+cot2θ′δ

4
,
β−cot2θ′γ

4

)

M ′
4 =

(
λ−cot2θ′δ

4
,
β+cot2θ′γ

4

)
Consider a line

4γx +4δy =λγ+βδ (3)

Clearly, the four points M ′
1, M ′

2, M ′
3and M ′

4 lies on this line (3). Hence, The four points M ′
1, M ′

2, M ′
3and M ′

4 are
collinear.
The line through these points is 4γx +4δy =λγ+βδ.
From Theorem 3.7, Clearly the line (3) is Van Aubel’s line (L).

Remark 3.2.

1. The Van Aubel’s point (M) of the quadrilateral ABCD and the points M1, M2, M3, M4, M ′
1, M ′

2, M ′
3 and M ′

4 all lie
on the Van Aubel’s Line of the quadrilateral ABC D.

2. If θ and θ′ of Theorem 3.7 and Theorem 3.8 are equal, Then the points M1, M2, M3, M4 respectively coincide with
the points M ′

1, M ′
2, M ′

3 and M ′
4.

Theorem 3.9.
The quadrilaterals PQ’RT’, P’QR’T, S1S′

2S3S′
4 and S′

1S2S′
3S4 are parallelograms where P, Q, R, T, P’, Q’, R’, T’ are the af-

fixes of the isosceles triangles with base angles θ constructed on the sides of the quadrilateral ABCD out and inwards
respectively.

Proof. To prove the quadrilateral PQ ′RT ′,P ′QR ′T,S1S′
2S3S′

4,S′
1S2S′

3S4 are parallelograms, it is enough to prove that
diagonals bisect each other.

By Theorem 3.7 and Theorem 3.8, it is clear that

The mid point of PR = The mid point of Q ′T ′ =

=
(

(x1 +x2 +x3 +x4)+ tanθ
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)− tanθ (x1 −x2 +x3 −x4)

4

)
The mid point of QT = The mid point of P ′R ′ =

=
(

(x1 +x2 +x3 +x4)− tanθ
(

y1 − y2 + y3 − y4
)

4
,

(
y1 + y2 + y3 + y4

)+ tanθ ( x1 −x2 +x3 −x4)

4

)
The mid point of S1S3 = The mid point of S′

2S′
4 =

=
(

(x1 +x2 +x3 +x4)−cot2θ
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)+cot2θ (x1 +x2 +x3 +x4)

4

)
The mid point of S2S4 = The mid point of S′

1S′
3 =

=
(

(x1 +x2 +x3 +x4)+cot2θ
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)−cot2θ (x1 +x2 +x3 +x4)

4

)
Hence theorem is proved.

Theorem 3.10.
Suppose ABCD is a given arbitrary quadrilateral , let P1P2...P2k+1,Q1Q2...Q2k+1,R1R2...R2k+1,T1T2...T2k+1,
P ′

1P ′
2...P ′

2k+1, Q ′
1Q ′

2...Q ′
2k+1,R ′

1R ′
2...R ′

2k+1 and T ′
1T ′

2...T ′
2k+1 be the regular polygons of 2k + 1 sides constructed on the

sides of ABCD out and inwards respectively, where k > 1 such that P1P2k+1 = AB = P ′
1P ′

2k+1, Q1Q2k+1 = BC =
Q ′

1Q ′
2k+1, R1R2k+1 = C D = R ′

1R ′
2k+1, T1T2k+1 = D A = T ′

1T ′
2k+1, and S1, S2, S3, S4, S′

1, S′
2,S′

3, S′
4 are the centers of

the regular polygons constructed on the sides, then

(a) The midpoints of P k+1
2

Q k+1
2

(M1) ,S1S3 (M3) ,R k+1
2

T k+1
2

(M2) , S2S4 (M4) ,P ′
k+1

2

Q ′
k+1

2

(
M ′

1

)
,S′

1S′
3

(
M ′

3

)
,

R ′
k+1

2

T ′
k+1

2

(
M ′

2

)
,S′

2S′
4

(
M ′

4

)
are collinear and lie on the van Aubel’s line(L) given by

4(x1 −x2 +x3 −x4)x +4(y1 − y2 + y3 − y4)y = (x1 +x3)2 − (x2 +x4)2 + (
y1 + y3

)2 − (
y2 + y4

)2
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(b) The quadrilaterals P k+1
2

Q ′
k+1

2

R k+1
2

T ′
k+1

2

,P ′
k+1

2

Q k+1
2

R ′
k+1

2

T k+1
2

,S1S′
2S3S′

4 and S′
1S2S′

3S4 are parallelograms.

Proof. It is clear that in the regular polygons P1P2...P2k+1,Q1Q2...Q2k+1,R1R2...R2k+1,T1T2...T2k+1, P ′
1P ′

2...P ′
2k+1,

Q ′
1Q ′

2...Q ′
2k+1,R ′

1R ′
2...R ′

2k+1 and T ′
1T ′

2...T ′
2k+1, the triangles AP K+1

2
B ,BQ K+1

2
C ,C R K+1

2
D,DT K+1

2
A are isosceles triangles

with base angle θ constructed outwards on the sides AB ,BC ,C D,D A of quadrilateral ABC D, here as the triangles
AP ′

K+1
2

B ,BQ ′
K+1

2

C ,C R ′
K+1

2

D,DT ′
K+1

2

A are also isosceles triangles with base angle θ, constructed inwards on the sides

AB ,BC ,C D,D A of quadrilateral ABC D.
Hence, By Theorem 3.7 and 3.8, (a) is true.
In the similar manner, we can prove (b) using Theorem 3.9.

Remark 3.3.
Clearly, by Theorem 3.10, it is true that we can also plot Van Aubel’s Point (M) for an arbitrary quadrilateral ABC D by
constructing the regular polygons of n number of sides on the sides of quadrilateral lie inwards or outwards, and by
applying the procedure discussed in 3.1.

Theorem 3.11.
Let ABCD is a quadrilateral, Suppose the triangles ∆ABP,∆C DR, are isosceles with angle α at their top vertices, and
∆BCQ,∆D AT are isosceles with angle π−α at their top vertices (all of them have same orientation) constructed on the
sides of the quadrilateral which lie outwards and if S1,S2,S3,S4 the circumcenters of the triangles ∆ABP,∆BCQ,∆C DR
and ∆D AT then

(a) PR is perpendicular to QT.

(b) The ratio of these two segements, PR and QT doesn’t depend from the quadrilateral.

(c) Quadrilateral S1,S2,S3,S4 is parallelogram.

(d) The three points, Van Aubel’s Point (MS1S2S3S4 ) of quadrilateral S1S2S3S4 and the mid points of PR(MPR ) and
QT (MQT ) are collinear and lie on the line Van Aubel’s Line given by

4(x1 −x2 +x3 −x4)x +4(y1 − y2 + y3 − y4)y = (x1 +x3)2 − (x2 +x4)2 + (
y1 + y3

)2 − (
y2 + y4

)2

And in particular the midpoint of PR(MPR) and QT (MQT ) is the Van Aubel’s point of S1S2S3S4 .(see Fig. 8)

Proof. Given at the top vertices P, R makes an angle Îś, so the two isosceles triangles ∆ABP,∆C DR having the base
angle as 90o − α/2. Using 2.1, we have

P =
(

(x1 +x2)+cot
(
α
2

)(
y1 − y2

)
2

,

(
y1 + y2

)−cot
(
α
2

)
(x1 −x2)

2

)

R =
(

(x3 +x4)+cot
(
α
2

)(
y3 − y4

)
2

,

(
y3 + y4

)−cot
(
α
2

)
(x3 −x4)

2

)
And given at the top vertices Q,T makes an angle π−α, so the two isosceles triangles ∆BCQ,∆D AT having the base
angle as α/2. Hence, using 2.2, we have

Q =
(

(x2 +x3)+ tan
(
α
2

)(
y2 − y3

)
2

,

(
y2 + y3

)− tan
(
α
2

)
(x2 −x3)

2

)

T =
(

(x4 +x1)+ tan
(
α
2

)(
y4 − y1

)
2

,

(
y4 + y1

)− tan
(
α
2

)
(x4 −x1)

2

)
Now,

slope of PR =
((

y1 + y2 − y3 − y4
)−cot

(
α
2

)
(x1 −x2 −x3 +x4)

(x1 +x2 −x3 −x4)+cot
(
α
2

)
(y1 − y2 − y3 + y4)

)
= Kv

Lv
(let )

slope of QT =
((

y2 + y3 − y4 − y1
)− tan

(
α
2

)
(x2 −x3 −x4 +x1)

(x2 +x3 −x4 −x1)+ tan
(
α
2

)
(y2 − y3 − y4 + y1)

)
= Mv

Nv
(let )

=−
(

(x1 +x2 −x3 −x4)+cot
(
α
2

)
(y1 − y2 − y3 + y4)(

y1 + y2 − y3 − y4
)−cot

(
α
2

)
(x1 −x2 −x3 +x4)

)
=− Lv

Kv
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Fig. 8.

Here, it is clear that (slope of PR)(slope of QT) =−1

⇒ Mv Kv +Lv Nv = 0 (4)

That is PR⊥QT , Hence (a) is proved, Now for (b), Consider Kv = (
y1 + y2 − y3 − y4

)−cot (α/2) (x1 −x2 −x3 +x4) ,Lv =
(x1 +x2 −x3 −x4) + cot (α/2)

(
y1 − y2 − y3 + y4

)
, Mv = (

y2 + y3 − y4 − y1
) − tan (α/2) (x2 −x3 −x4 +x1) , Nv =

(x2 +x3 −x4 −x1)− tan (α/2)
(
y2 − y3 − y4 + y1

)
It is clear that Kv = cot (α/2) Nv and Lv = − cot (α/2) Mv ,

From (4), it is clear that

Mv

Nv
=− Lv

Kv
⇒

√(
Lv

2 +Kv
2

Mv
2 +Nv

2

)
= Kv

Nv
= −Lv

Mv
= cot(α/2)

Now ∣∣∣∣ PR

QT

∣∣∣∣=
∣∣∣∣∣
√(

Lv
2 +Kv

2

Mv
2 +Nv

2

)∣∣∣∣∣=
∣∣∣∣ Kv

Nv

∣∣∣∣= ∣∣∣∣−Lv

Mv

∣∣∣∣= |cot(α/2)|

That is the ratio of two segments PR and QT doesn’t depend on the quadrilateral. Hence (b) is proved.
Now for (c), we proceed as follows:

Since the base angles of isosceles triangles ∆ABP,∆C DR are 90o − α/2, So, using 2.3, we have

S1 =
(

(x1 +x2)+cotα
(
y1 − y2

)
2

,

(
y1 + y2

)−cotα (x1 −x2)

2

)
and

S3 =
(

(x3 +x4)+cotα
(
y3 − y4

)
2

,

(
y3 + y4

)−cotα (x3 −x4)

2

)
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In the similar manner, since the base angles of isosceles triangles ∆BCQ,∆D AT are α/2. So, using 2.3, we have

S2 =
(

(x2 +x3)−cotα
(
y2 − y3

)
2

,

(
y2 + y3

)+cotα (x2 −x3)

2

)
and

S4 =
(

(x4 +x1)−cotα
(
y4 − y1

)
2

,

(
y4 + y1

)+cotα (x4 −x1)

2

)
Now, It is clear that, The mid point of S1S3 =The midpoint of S2S4

=
(

(x1 +x2 +x3 +x4)+cotα
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)−cotα (x1 −x2 +x3 −x4)

4

)
Hence, the quadrilateral S1S2S3S4 is parallelogram, which completes the proof of (c).

Now for (d), Since the quadrilateral S1S2S3S4 is parallelogram, Van Aubel’s point
(
MS1S2S3S4

)
of quadrilateral

S1S2S3S4 is the midpoint of the diagonals.
Hence Van Aubel’s point

(
MS1S2S3S4

)
of quadrilateral S1S2S3S4

MS1S2S3S4 =
(

(x1 +x2 +x3 +x4)+cotα
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)−cotα (x1 −x2 +x3 −x4)

4

)
and Mid point of PR

MPR =
(

(x1 +x2 +x3 +x4)+cot
(
α
2

)(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)−cot
(
α
2

)
(x1 −x2 +x3 −x4)

4

)

Mid point of QT

MQT =
 (x1 +x2 +x3 +x4)− tan

(
θ
2

)(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)+ tan
(
θ
2

)
(x1 −x2 +x3 −x4)

4


Consider λ= x1 +x2 +x3 +x4, β= y1 + y2 + y3 + y4, γ= x1 −x2 +x3 −x4 and δ= y1 − y2 + y3 − y4, then

MS1S2S3S4 =
(
λ+cotαδ

4
,
β−cotαγ

4

)

MPR =
(
λ+cot

(
α
2

)
δ

4
,
β−cot

(
α
2

)
γ

4

)

MQT =
(
λ− tan

(
α
2

)
δ

4
,
β+ tan

(
α
2

)
γ

4

)
The midpoint of M MPR and MQT

=
(

2λ+ (
cot

(
α
2

)− tan
(
α
2

))
δ

8
,

2β− (
cot

(
α
2

)− tan
(
α
2

))
γ

8

)
(
∵

(
cot

(α
2

)
− tan

(α
2

))
= 2cotα

)
=

(
λ+cotαδ

4
,
β−cotαγ

4

)
= MS1S2S3S4

Hence, the midpoint of PR (MPR ) and QT
(
MQT

)
is the Van Aubel’s point S1S2S3S4.

Now consider a line (2), that is 4γx + 4δy = λγ+βδ. Clearly, the three points lies on this line (2). Hence, the three
points MS1S2S3S4 , MPR , MQT are collinear. The line through these points is 4γx +4δy =λγ+βδ.

From Theorem 3.7, Clearly, the line (2) is van aubel’s line (L).

Theorem 3.12.
Let ABCD is a quadrilateral, suppose the triangles ∆ABP ′, ∆C DR ′ , are isosceles with angle Îś at their top vertices,
and ∆BCQ ′, ∆D AT ′ are isosceles with angle π − α at their top vertices (all of them have same orientation) con-
structed on the sides of the quadrilateral which lie inwards and if S′

1, S′
2,S′

3,S′
4 the circumcenters of the triangles

∆ABP ′,∆BCQ ′,∆C DR ′ and ∆D AT ′, Then
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(a) P’R’ is perpendicular to Q’T’

(b) The ratio of these two segements, P’R’ and Q’T’, doesn’t depend from the quadrilateral.

(c) Quadrilateral S′
1, S′

2,S′
3,S′

4 is parallelogram

(d) The three points, the Van Aubel’s point
(
M ′

S′
1, S′

2,S′
3,S′

4

)
of quadrilateral S′

1, S′
2,S′

3,S′
4 and mid points of P’R’(M ′

P ′R ′ )

and Q’T’(M ′
Q ′T ′ ) are collinear and lie on the line Van Aubel’s Line given by

4(x1 −x2 +x3 −x4)x +4(y1 − y2 + y3 − y4)y = (x1 +x3)2 − (x2 +x4)2 + (
y1 + y3

)2 − (
y2 + y4

)2

And in particular the midpoint of P’R’(M ′
P ′R ′ ) and Q’T’(M ′

Q ′T ′ ) is the Van Aubel’s point of S1, S2,S3,S4

Proof. Given at the top vertices P’, R’ makes an angle Îś, so the two isosceles triangles∆ABP ′,∆C DR ′ having the base
angle as 90o − α/2. Using 2.1, we have

P ′ =
(

(x1 +x2)−cot
(
α
2

)(
y1 − y2

)
2

,

(
y1 + y2

)+cot
(
α
2

)
(x1 −x2)

2

)

R ′ =
(

(x3 +x4)−cot
(
α
2

)(
y3 − y4

)
2

,

(
y3 + y4

)+cot
(
α
2

)
(x3 −x4)

2

)

And given at the top vertices Q’, T’ makes an angle π−α, so the two isosceles triangles∆BCQ ′,∆D AT ′ having the base
angle as α/2. Hence, using 2.2, we have

Q ′ =
(

(x2 +x3)− tan
(
α
2

)(
y2 − y3

)
2

,

(
y2 + y3

)+ tan
(
α
2

)
(x2 −x3)

2

)

T ′ =
(

(x4 +x1)− tan
(
α
2

)(
y4 − y1

)
2

,

(
y4 + y1

)+ tan
(
α
2

)
(x4 −x1)

2

)
Now

Slope of P ′R ′ =
((

y1 + y2 − y3 − y4
)+cot

(
α
2

)
(x1 −x2 −x3 +x4)

(x1 +x2 −x3 −x4)−cot
(
α
2

)
(y1 − y2 − y3 + y4)

)
= Kv

′

Lv
′ (let )

Slope of Q ′T ′ =
((

y2 + y3 − y4 − y1
)+ tan

(
α
2

)
(x2 −x3 −x4 +x1)

(x2 +x3 −x4 −x1)− tan
(
α
2

)
(y2 − y3 − y4 + y1)

)
= Mv

′

Nv
′ (l et )

=−
(

(x1 +x2 −x3 −x4)−cot
(
α
2

)
(y1 − y2 − y3 + y4)(

y1 + y2 − y3 − y4
)+cot

(
α
2

)
(x1 −x2 −x3 +x4)

)
=− Lv

′

Kv
′

It is clear that (slope of P’R’)(slope of Q’T’) =−1

⇒ Mv
′Kv

′+Lv
′Nv

′ = 0 (5)

That is P ′R ′⊥Q ′T ′ Hence (a) is proved.
Now for (b), Consider

Kv
′ = (

y1 + y2 − y3 − y4
)+cot(α/2)(x1 −x2 −x3 +x4) ,Lv

′ = (x1 +x2 −x3 −x4)−cot(α/2)
(
y1 − y2 − y3 + y4

)
Mv

′ = (
y2 + y3 − y4 − y1

)+ tan(α/2)(x2 −x3 −x4 +x1) , Nv
′ = (x2 +x3 −x4 −x1)+ tan(α/2)

(
y2 − y3 − y4 + y1

)
It is clear that

Kv
′ =−cot(α/2) Nv

′

Kv
′ =−cot(α/2) Nv

′ and L′
v = cot(α/2) Mv

′, From (5), it is clear that

Mv
′

Nv
′ =− Lv

′

Kv
′ ⇒

√(
Lv

′2 +Kv
′2

Mv
′2 +Nv

′2

)
= Kv

′

Nv
′ =

−Lv
′

Mv
′ =−cot(α/2)
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Now ∣∣∣∣ P ′R ′

Q ′T ′

∣∣∣∣=
∣∣∣∣∣
√(

L′2 +K ′2

M ′2 +N ′2

)∣∣∣∣∣=
∣∣∣∣ K ′

N ′

∣∣∣∣= ∣∣∣∣−L′

M ′

∣∣∣∣= |−cot(α/2)|

That is the ratio of two segments P’R’ and Q’T’ doesn’t depend from the quadrilateral. Hence (b) is proved.
Now for (c), we proceed as follows:

Since the base angles of isosceles triangles ∆ABP ′,∆C DR ′ are 90o − α/2 So, using 2.3, we have

S′
1 =

(
(x1 +x2)−cotα

(
y1 − y2

)
2

,

(
y1 + y2

)+cotα (x1 −x2)

2

)
and

S′
3 =

(
(x3 +x4)−cotα

(
y3 − y4

)
2

,

(
y3 + y4

)+cotα (x3 −x4)

2

)
In the similar manner, since the base angles of isosceles triangles ∆BCQ ′,∆D AT ′ are α/2. So using 2.3, we have

S′
2 =

(
(x2 +x3)+cotα

(
y2 − y3

)
2

,

(
y2 + y3

)−cotα (x2 −x3)

2

)
and

S′
4 =

(
(x4 +x1)+cotα

(
y4 − y1

)
2

,

(
y4 + y1

)−cotα (x4 −x1)

2

)
Now, It is clear that, The mid point of S′

1S′
3 =The midpoint of S′

2S′
4 =

=
(

(x1 +x2 +x3 +x4)−cotα
(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)+cotα (x1 −x2 +x3 −x4)

4

)
Hence, the quadrilateral S′

1S′
2S′

3S′
4 is parallelogram, which completes the proof of (c).

Now for (d), Since the quadrilateral S′
1S′

2S′
3S′

4 is parallelogram, Van Aubel’s point
(
MS′

1S′
2S′

3S′
4

)
of quadrilateral

S′
1S′

2S′
3S′

4 is the midpoint of the diagonals. Hence, Van Aubel’s point
(
MS′

1S′
2S′

3S′
4

)
of quadrilateral S′

1S′
2S′

3S′
4

M ′
S′

1S′
2S′

3S′
4
=

(
(x1 +x2 +x3 +x4)−cotα

(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)+cotα (x1 −x2 +x3 −x4)

4

)
And midpoint of P ′R ′ =

M ′
P ′R ′ =

(
(x1 +x2 +x3 +x4)−cot

(
α
2

)(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)+cot
(
α
2

)
(x1 −x2 +x3 −x4)

4

)
Mid point of Q ′T ′ =

M ′
Q ′T ′ =

(
(x1 +x2 +x3 +x4)+ tan

(
α
2

)(
y1 − y2 + y3 − y4

)
4

,

(
y1 + y2 + y3 + y4

)− tan
(
α
2

)
(x1 −x2 +x3 −x4)

4

)
Consider λ= x1 +x2 +x3 +x4,β= y1 + y2 + y3 + y4,γ= x1 −x2 +x3 −x4,δ= y1 − y2 + y3 − y4, then

M ′
S′

1S′
2S′

3S′
4
=

(
λ−cotαδ

4
,
β+cotαγ

4

)

M ′
P ′R ′ =

(
λ−cot

(
α
2

)
δ

4
,
β+cot

(
α
2

)
γ

4

)

M ′
Q ′T ′ =

(
λ+ tan

(
α
2

)
δ

4
,
β− tan

(
α
2

)
γ

4

)
The midpoint of M ′

P ′R ′ and M ′
Q ′T ′

=
(

2λ− (
cot

(
α
2

)− tan
(
α
2

))
δ

8
,

2β+ (
cot

(
α
2

)− tan
(
α
2

))
γ

8

)

=
(
λ−cotαδ

4
,
β+cotαγ

4

)
= M ′

S′
1S′

2S′
3S′

4

(
∵

(
cot

(α
2

)
− tan

(α
2

))
= 2cotα

)
Hence, the midpoint of P ′R ′ (M ′

P ′R ′
)

and Q ′T ′
(
M ′

Q ′T ′
)

is the Van Aubel’s point of S′
1S′

2S′
3S′

4

Now consider a line (2), that is 4γx + 4δy = λγ+βδ. Clearly, the three points lies on this line (2). Hence, the three
points MS′

1S′
2S′

3S′
4
, M ′

P ′R ′ , M ′
Q ′T ′ are collinear. The line through these points is 4γx +4δy =λγ+βδ.

From Theorem 3.7, Clearly, the line (2) is van aubel’s line (L).
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Remark 3.4. 1. The Van Aubel’s point
(
MS1S2S3S4

)
of quadrilateral S1S2S3S4 the Van Aubel’s point

(
M ′

S′
1S′

2S′
3S′

4

)
of

quadrilateral S′
1S′

2S′
3S′

4 and the four points MPR , MQT , M ′
P ′R ′ , M ′

Q ′T ′ are collinear lie on the Van Aubel’s Line.

2. Using 3.2, 3.3 it is clear that Van Aubel’s line contains 15 points, They are Van Aubel’s point (M) of the quadrilat-
eral ABCD , the points M1, M2, M3, M4, M ′

1, M ′
2, M ′

3, M ′
4 , the Van Abel’s point of quadrilateral S1S2S3S4, the Van

Abel’s point of quadrilateral S′
1S′

2S′
3S′

4, MPR , MQT , M ′
P ′R ′ , M ′

Q ′T ′ .

Theorem 3.13.
The following statements are true.

(a) The Van Aubel’s point (M) of quadrilateral ABCD is the midpoint of (Van Aubel ’s points of the quadrilaterals

S1S2S3S4 and S′
1S′

2S′
3S′

4 ),
(
MPR , M ′

P ′R ′
)

and
(
MQT , M ′

Q ′T ′
)

(see Fig. 9)

(b) MPR M ′
Q ′T ′ = MS1S2S3S4 M ′

S′
1S′

2S′
3S′

4
= MQT M ′

P ′R ′

Fig. 9.

Proof. We have

MS1S2S3S4 =
(
λ+cotαδ

4
,
β−cotαγ

4

)

MPR =
(
λ+cot

(
α
2

)
δ

4
,
β−cot

(
α
2

)
γ

4

)

MQT =
(
λ− tan

(
α
2

)
δ

4
,
β+ tan

(
α
2

)
γ

4

)

M ′
S′

1S′
2S′

3S′
4
=

(
λ−cotαδ

4
,
β+cotαγ

4

)

M ′
P ′R ′ =

(
λ−cot

(
α
2

)
δ

4
,
β+cot

(
α
2

)
γ

4

)
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M ′
Q ′T ′ =

(
λ+ tan

(
α
2

)
δ

4
,
β− tan

(
α
2

)
γ

4

)
Now it is clear that the Van Aubel’s point (M) of quadrilateral ABCD is the midpoint of the (Van Aubel’s points of the

quadrilaterals S1S2S3S4 and S′
1S′

2S′
3S′

4),
(
MPR , M ′

P ′R ′
)

,
(
MQT , M ′

Q ′T ′
)

.

Hence (a) is proved.
Now for (b), Consider

MPR M ′
Q ′T ′ =

∣∣∣∣∣
(

cot
(
α
2

)− tan
(
α
2

)
4

)∣∣∣∣∣
(√

δ2 +γ2

)
=

∣∣∣∣cotα

2

∣∣∣∣(√δ2 +γ2

)

MS1S2S3S4 M ′
S′

1S′
2S′

3S′
4
=

∣∣∣∣cotα

2

∣∣∣∣(√δ2 +γ2

)

MQT M ′
P ′R ′ =

∣∣∣∣∣
(

cot
(
α
2

)− tan
(
α
2

)
4

)∣∣∣∣∣
(√

δ2 +γ2

)
=

∣∣∣∣cotα

2

∣∣∣∣(√δ2 +γ2

)
Hence

MPR M ′
Q ′T ′ = MS1S2S3S4 M ′

S′
1S′

2S′
3S′

4
= MQT M ′

P ′R ′

3.2. Dao’s Generalization [1]

Theorem 3.14.
Let ABCD be a quadrilateral, let four points A1,B1,C1,D1 on the plane either interior or exterior to the quadrilateral such
that ∠A1 AB =∠D AD1 =α, ∠B1BC =∠AB A1 =β, ∠BC B1 =∠C1C D = γ, ∠C DC1 =∠D1D A = δ and α+γ=β+δ= π

2
in the same

(a) A1B1C1D1 is an orthodiagonal quadrilateral.

(b) The ratio of these two segments, A1C1 and B1D1 doesn’t depend from the quadrilateral.

Fig. 10.

Proof. Without loss of generality let us consider the coordinates of vertices of the quadrilateral ABC D as A =(
x1, y1

)
,B = (

x2, y2
)

,C = (
x3, y3

)
and D = (

x4, y4
)

and also given ∠A1 AB = ∠D AD1 = α,∠B1BC = ∠AB A1 =
β,∠BC B1 = ∠C1C D = γ = 900 − α,∠C DC1 = ∠D1D A = δ = 900 − β. So using 2.1, we have the coordinates of
A1,B1,C1,D1 as follows

A1 =
( (

x1 cotβ+x2 cotα
)± (

y1 − y2
)

cotα+cotβ
,

(
y1 cotβ+ y2 cotα

)∓ (x1 −x2)

cotα+cotβ

)

B1 =
( (

x2 cotγ+x3 cotβ
)± (

y2 − y3
)

cotβ+cotγ
,

(
y2 cotγ+ y3 cotβ

)∓ (x2 −x3)

cotβ+cotγ

)

=
( (

x2 +x3 cotαcotβ
)±cotα

(
y2 − y3

)
1+cotαcotβ

,

(
y2 + y3 cotαcotβ

)∓cotα (x2 −x3)

1+cotαcotβ

) (
since γ= 900 −α)
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C1 =
( (

x3 cotδ+x4 cotγ
)± (

y3 − y4
)

cotγ+cotδ
,

(
y3 cotδ+ y4 cotγ

)∓ (x3 −x4)

cotγ+cotδ

)

=
( (

x3 cotα+x4 cotβ
)±cotαcotβ

(
y3 − y4

)
cotα+cotβ

,

(
y3 cotα+ y4 cotβ

)∓cotαcotβ (x3 −x4)

cotα+cotβ

)(
since γ= 900 −α, δ = 900 −β)

D1 =
(

(x4 cotα+x1 cotδ)± (
y4 − y1

)
cotδ+cotα

,

(
y4 cotα+ y1 cotδ

)∓ (x4 −x1)

cotδ+cotα

)

=
( (

x4 cotαcotβ+x1
)±cotβ

(
y4 − y1

)
1+cotαcotβ

,

(
y4 cotαcotβ+ y1

)∓cotβ (x4 −x1)

1+cotαcotβ

) (
since δ = 900 −β)

Now

Slope of A1C1 =
cotα(y3 − y2)+cotβ(y4 − y1)∓ [

cotαcotβ(x3 −x4)− (x1 −x2)
]

cotα(x3 −x2)+cotβ(x4 −x1)± [
cotαcotβ(y3 − y4)− (y1 − y2)

] = Kd

Ld

Slope of B1D1 =
(y1 − y2)+ (y4 − y3)cotαcotβ∓ [

cotβ(x4 −x1)−cotα(x2 −x3)
]

(x1 −x2)+ (x4 −x3)cotαcotβ± [
cotβ(y4 − y1)−cotα(y2 − y3)

] = Md

Nd

=−
(

cotα(x3 −x2)+cotβ(x4 −x1)± [
cotαcotβ(y3 − y4)− (y1 − y2)

]
cotα(y3 − y2)+cotβ(y4 − y1)∓ [

cotαcotβ(x3 −x4)− (x1 −x2)
] )

=− Ld

Kd

So, it is clear that (Slope of A1C1)( Slope of B1D1)=−1,

⇒ Md Kd +Ld Nd = 0 (6)

Hence A1C1⊥B1D1, that is quadrilateral A1C1B1D1 is orthodiagonal quadrilateral. So, (a) is proved.
Now for (b), Consider

Kd = cotα(y3 − y2)+cotβ(y4 − y1)∓ [
cotαcotβ(x3 −x4)− (x1 −x2)

]
Ld = cotα(x3 −x2)+cotβ(x4 −x1)± [

cotαcotβ(y3 − y4)− (y1 − y2)
]

Md = (y1 − y2)+ (y4 − y3)cotαcotβ∓ [
cotβ(x4 −x1)−cotα(x2 −x3)

]
Nd = (x1 −x2)+ (x4 −x3)cotαcotβ± [

cotβ(y4 − y1)−cotα(y2 − y3)
]

It is clear that Kd = Nd and Ld =−Md .
From (6), it is clear that

Md

Nd
=− Ld

Kd
⇒

√(
Ld

2 +Kd
2

Md
2 +Nd

2

)
= Kd

Nd
= −Ld

Md
= 1

Now ∣∣∣∣ A1C1

B1D1

∣∣∣∣= ∣∣∣∣cotαcotβ+1

cotα+cotβ

∣∣∣∣
√(

Ld
2 +Kd

2

Md
2 +Nd

2

)
=

∣∣∣∣(cotαcotβ+1

cotα+cotβ

)
Kd

Nd

∣∣∣∣= ∣∣∣∣−(
cotαcotβ+1

cotα+cotβ

)
Ld

Md

∣∣∣∣= ∣∣∣∣cotαcotβ+1

cotα+cotβ

∣∣∣∣
That is the ratio of two segments PR and QT doesn’t depend from the quadrilateral. Hence (b) is proved.

3.3. Generalization of Kiepert Hyperbola

Suppose the diagonals of quadrilaterals ABC D are equal, suppose the triangles ∆ABP,∆C DR are isosceles with
angle ψ at their top vertices, and the triangles ∆BCQ,∆D AT are isosceles with angle π−ψ at their top vertices (all
of them have the same orientation). Then intersection of PR and QT moves along an equilateral hyperbola passing
through the midpoints of diagonals and asymptotes midlines of the quadrilateral. For further generalizations refer [2].
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