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Some Reflections on the Van Hiele theory 

Michael de Villiers 
Mathematics Education, University of KwaZulu-Natal, South Africa 

This paper gives a review of research on the Van Hiele Theory over the past 30 years, and highlights some 

important issues regarding theoretical implications for designing learning activities in dynamic geometry 

contexts, as well as issues of further research such as hierarchical class inclusion. 

The Van Hiele theory originated in the respective doctoral dissertations of Dina van 

Hiele-Geldof and her husband Pierre van Hiele at the University of Utrecht, Netherlands 

in 1957. Dina unfortunately died shortly after the completion of her dissertation, and 

Pierre was the one who developed and disseminated the theory further in later 

publications. 

 While Pierre's dissertation mainly tried to explain why pupils experienced 

problems in geometry education (in this respect it was explanatory and descriptive), 

Dina's dissertation was about a teaching experiment and in that sense is more 

prescriptive regarding the ordering of geometry content and learning activities of pupils. 

The most obvious characteristic of the theory is the distinction of five discrete thought 

levels in respect to the development of pupils' understanding of geometry. Four important 

characteristics of the theory are summarized as follows by Usiskin (1982:4): 

• fixed order - The order in which pupils progress through the thought levels is 

invariant. In other words, a pupil cannot be at level n without having passed 

through level n-1.  

• adjacency - At each level of thought that which was intrinsic in the preceding 

level becomes extrinsic in the current level. 

• distinction - Each level has its own linguistic symbols and own network of 

relationships connecting those symbols. 

• separation - Two persons who reason at different levels cannot understand each 

other. 

 

The main reason for the failure of the traditional geometry curriculum was attributed by 

the Van Hieles to the fact that the curriculum was presented at a higher level than those 
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of the pupils; in other words they could not understand the teacher nor could the teacher 

understand why they could not understand! Although the Van Hiele theory distinguishes 

between five different levels of thought, we shall here only focus on the first four levels 

as they are the most pertinent ones for secondary school geometry. The general 

characteristics of each level can be described as follows: 

Level 1: Recognition 

Pupils visually recognize figures by their global appearance. They recognize triangles, 

squares, parallelograms, and so forth by their shape, but they do not explicitly identify the 

properties of these figures. 

Level 2: Analysis 

Pupils start analyzing the properties of figures and learn the appropriate technical 

terminology for describing them, but they do not interrelate figures or properties of 

figures. 

Level 3: Ordering 

Pupils logically order the properties of figures by short chains of deductions and 

understand the interrelationships between figures (e.g. class inclusions). 

Level 4: Deduction 

Pupils start developing longer sequences of statements and begin to understand the 

significance of deduction, the role of axioms, theorems and proof. 

 

Note that in a certain sense the transition from Level 1 to Level 2 involves a transition 

from an inactive-iconic handling of concepts to a more symbolic one, to use Bruner's 

familiar concepts. More simply put, the attainment of Level 2 involves the acquisition of 

the technical language by which the properties of the concept can be described. However, 

the transition from Level 1 to Level 2 involves more than just the acquisition of language. 

It involves recognizing certain new relationships between concepts and the refinement 

and renewal of existing concepts.  

 

For a student to progress from Level 1 to Level 2 regarding a particular topic (e.g. the 

quadrilaterals), a significant re-arrangement of relationships and a refinement of concepts 

have to occur. There is therefore far more in this transition than merely a verbalization of 
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intuitive knowledge; the verbalization goes together with a restructuring of knowledge. 

This restructuring must first occur before students can start exploring the logical 

relationships between these properties at Level 3. Van Hiele (1973:94) puts it as follows: 

"The network of relations on Level 3 can only be meaningfully established, when 

the network of relations at Level 2 are adequately established. When the second network 

of relations are present in such an adequate form, that its structure becomes apparent 

and one can talk about it with others, then the building blocks for Level 3 are ready" 

(Freely translated from Dutch) 

 

Level 3 also represents a completely different network of relations than Level 2. Where 

the network of relations at the Level 2 involves the association of properties with types 

of figures and relationships between figures according to these properties, the network of 

relations at the Level 3 involve the logical relationships between the properties of 

figures. The network of relations at the Level 3 no longer refer to concrete, specific 

figures, nor do they form a frame of reference in which it is asked whether a given figure 

has certain properties. The typical questions that are asked at Level 3 are whether a 

certain property follows from another, or can be deduced from a particular subset of 

properties (in other words whether it could be taken as a definition or is a theorem) or 

whether two definitions are equivalent.  

 

The network of relations for the First and Second thought levels are therefore quite 

different (Van Hiele, 1973:90): 

 

"The reasoning of a logical system belongs to the Third Level of thought. The network of 

relations, which is based on a verbal description of observed facts, belong to the Second 

Level of thought. These two levels have their own networks of relations where the one is 

distinct from the other: one either reasons in the one network of relations or in the 

other." 
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The differences between the first three levels can be summarized as shown in Table 1 in 

terms of the objects and structure of thought at each level (adapted from Fuys et al, 

1988:6). 

 Level 1 Level 2 Level 3 

Objects  

of thought 

Individual figures Classes of figures Definitions of classes 

of figures 

Structure  

of thought 

Visual recognition 

Naming 

Visual sorting 

Recognizing properties 

as characteristics of 

classes 

Noticing & formulating 

logical relationships 

between properties 

Examples • Parallelograms all go 

together because they 

"look the same" 

• Rectangles, squares 

and rhombi are not 

parallelograms because 

they do "not look like 

them" 

  

 

A parallelogram has: 

• 4 sides 

• opp. angles = 

• opp. sides = 

• opp. sides // 

• bisecting diagonals; 

etc. 

A rectangle is not a 

parallelogram since a 

rectangle has 90° 

angles, but a 

parallelogram not. 

• Opposite sides = 

imply opposite sides // 

• Opposite sides // 

imply opposite sides = 

• opposite angles = 

imply opp. sides = 

• bisecting diagonals 

imply half-turn 

symmetry 

  

Table 1 

By using task-based interviews, Burger & Shaughnessy (1986) characterized pupils' 

thought levels at the first four levels more fully as follows: 

Level 1 

(1) Often use irrelevant visual properties to identify figures, to compare, to classify 

and to describe. 

(2) Usually refer to visual prototypes of figures, and is easily misled by the 

orientation of figures. 
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(3) An inability to think of an infinite variation of a particular type of figure (e,g. in 

terms of orientation and shape). 

(4) Inconsistent classifications of figures; for example, using non-common or 

irrelevant properties to sort figures. 

(5) Incomplete descriptions (definitions) of figures by viewing necessary (often 

visual) conditions as sufficient conditions. 

Level 2 

(1) An explicit comparison of figures in terms of their underlying properties. 

(2) Avoidance of class inclusions between different classes of figures, eg. squares and 

rectangles are considered to be disjoint. 

(3) Sorting of figures only in terms of one property, for example, properties of sides, 

while other properties like symmetries, angles and diagonals are ignored. 

(4) Exhibit an uneconomical use of the properties of figures to describe (define) 

them, instead of just using sufficient properties. 

(5) An explicit rejection of definitions supplied by other people, e.g. a teacher or 

textbook, in favour of their own personal definitions. 

(6) An empirical approach to the establishment of the truth of a statement; e.g. the use 

of observation and measurement on the basis of several sketches. 

Level 3 

(1) The formulation of economically, correct definitions for figures. 

(2) An ability to transform incomplete definitions into complete definitions and a 

more spontaneous acceptance and use of definitions for new concepts. 

(3) The acceptance of different equivalent definitions for the same concept. 

(4) The hierarchical classification of figures, e.g. quadrilaterals. 

(5) The explicit use of the logical form "if ... then' in the formulation and handling of 

conjectures, as well as the implicit use of logical rules such as modus ponens. 

(6) An uncertainty and lack of clarity regarding the respective functions of axioms, 

definitions and proof. 

Level 4 

(1) An understanding of the respective functions (roles) of axioms, definitions and 

proof. 
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(2)  Spontaneous conjecturing and self-initiated efforts to deductively verify them. 

Russian research on geometry education 

Geometry has always formed an extremely prominent part of the Russian mathematics 

curriculum in the nineteenth and twentieth centuries. This proud tradition was no doubt 

influenced by (and instrumental in) the achievements of several famous Russian 

geometers (like Lobachevsky) in the past two centuries. Traditionally the Russian 

geometry curriculum consisted of two phases, namely, an intuitive phase for Grades 1 to 

5 and a systematization (deductive) phase from Grade 6 (12/13 year old). 

 In the late sixties Russian (Soviet) researchers undertook a comprehensive 

analysis of both the intuitive and the systematization phases in order to try and find an 

answer to the disturbing question of why pupils who were making good progress in other 

school subjects, showed little progress in geometry. In their analysis, the Van Hiele 

theory played a major part. For example, it was found that that at the end of Grade 5 

(before the resumption of the systematization phase which requires at least Level 3 

understanding) only 10-15% of the pupils were at Level 2.  

 The main reason for this was the insufficient attention to geometry in the primary 

school. For example, in the first five years, pupils were expected to become acquainted, 

via mainly Level 1 activities, with only about 12-15 geometrical objects (and associated 

terminology). In contrast, it was expected of pupils in the very first topic treated in the 

first month of Grade 6 to become acquainted not only with about 100 new objects and 

terminology, but it was also being dealt with at Level 3 understanding. (Or frequently, the 

teacher had to try and introduce new content at 3 different levels simultaneously). No 

wonder they described the period between Grades 1 and 5 as a "prolonged period of 

geometric inactivity"! 

 The Russians subsequently designed a very successful experimental geometry 

curriculum based on the Van Hiele theory. They found that an important factor was the 

continuous sequencing and development of concepts from Grade 1. As reported in 

Wirszup (1976: 75-96), the average pupil in Grade 8 of the experimental curriculum 

showed the same or better geometric understanding than their Grade 11 and 12 

counterparts in the old curriculum. 
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The primary & middle school geometry curriculum 

The parallels from the Russian experience to South Africa and other countries are 

obvious. In South Africa we used to have a geometry curriculum heavily loaded in the 

senior secondary school with formal geometry, and with relatively little content done 

informally in the primary school. (E.g. little similarity or circle geometry is done in the 

primary school). On average, pupils' performance in the South African matric (Grade 12) 

geometry was far worse than in algebra. Why? 

 The Van Hiele theory supplies an important explanation. For example, research 

by De Villiers & Njisane (1987) showed that about 45% of pupils investigated in Grade 

12 in KwaZulu had only mastered Level 2 or lower, whereas the examination assumed 

mastery at Level 3 and beyond! Similar low Van Hiele levels among secondary school 

pupils have been found by Malan (1986), Smith & De Villiers (1990) and Govender 

(1995). In particular, the transition from Level 1 to Level 2 posed specific problems to 

second language learners, since it involves the acquisition of the technical terminology by 

which the properties of figures need to be described and explored. This requires sufficient 

time, which is not available in the presently overloaded secondary curriculum.  

 It seems clear that no amount of effort and fancy teaching methods at the 

secondary school will be successful, unless we embark on a major revision of the primary 

school geometry curriculum along Van Hiele lines. The future of secondary school 

geometry thus ultimately depends on primary school geometry! 

 In Japan for example pupils already start off in Grade 1 with extended tangram, as 

well as other planar and spatial, investigations (e.g. see Nohda, 1992). This is followed 

up continuously in following years so that by Grade 5 they are already dealing formally 

with the concepts of congruence and similarity; concepts that are only introduced in 

Grades 8 and 9 in South Africa. Similarly in Taiwan where geometry is started early, it is 

reported in a study by Wu & Ma (2006) that 28.3% of Grade 6 learners were already at 

Van Hiele 3, whereas the same percentage of learners at Van Hiele Level 3 in South 

Africa, only occurred in Grade 11 (De Villiers & Njisane, 1987; De Villiers, 1987). More 

recently, Feza & Webb (2005) found that only 5 out of 30 (16.7%) Grade 7 learners 

interviewed in South Africa, had reached Van Hiele level 2. It seems no wonder that in 
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international comparative studies in recent years, Japanese and Taiwanese school 

children have consistently outperformed school children from South Africa, as well as 

other countries. 

 Although the recent introduction of tessellations in South African primary schools 

is to be greatly welcomed, many teachers and textbook authors do not appear to 

understand its relevance in relation to the Van Hiele theory. Although tessellations have 

great aesthetic attraction due to their intriguing and artistically pleasing patterns, the 

fundamental reason for introducing it in the primary school is that it provides an intuitive 

visual foundation (Van Hiele 1) for a variety of geometric content, which can later be 

treated more formally in a deductive context. 

 For example, in a triangular tessellation pattern such as shown in Figure 1, one 

could ask pupils the following questions: 

(1)  identify and colour in parallel lines  

(2) what can you say about angles A, B, C , D and E and why? 

(3) what can you say about angles A, 1, 2, 3 and 4 and why? 

4

3

2

1

E
D

C
B

A

 

Figure 1: Visualization 

In such an activity pupils will realize that angles A, B, C, D and E are all equal since a 

halfturn of the grey triangle around the midpoint of the side AB maps angle A onto angle 

B, etc. In this way, pupils can be introduced for the first time to the concept of "saws" or 

"zig-zags" (alternate angles). Similarly, pupils should realize that angles A, 1, 2, 3 and 4 
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are all equal since a translation of the grey triangle in the direction of angles 1, 2, 3 and 4 

consecutively maps angle A onto each of these angles. In this way, pupils can be 

introduced for the first time to the concept of "ladders" (corresponding angles). Pupils 

should further be encouraged to find different saws and ladders in the same and other 

tessellation patterns to improve their visualization ability. 

 Since each tile has to be identical and can be made to fit onto each other exactly 

by means of translations, rotations or reflections pupils can easily be introduced to the 

concept of congruency. Pupils can also be asked to look for different shapes in such 

tessellation patterns, e.g. parallelograms, trapezia and hexagons. They could also be 

encouraged to look for larger figures with the same shape, thus intuitively introducing 

them to the concept of similarity (as shown in Figure 1 by the shaded similar triangles 

and parallelograms). 

 Tessellations also provide a suitable context for the analysis of the properties of 

geometric figures (Van Hiele 2), as well as their logical explanation (Van Hiele 3). For 

example, after pupils have constructed a triangular tessellation pattern as shown in Figure 

2, one could ask them questions like the following: 

(1) What can you say about angles A and B in relation to D and E? Why? What can 

you therefore conclude from this? 

(2) What can you say about angles F and G in relation to angles H and I? Why? What 

can you therefore conclude from this? 

(3) What can you say about line segment JK in relation to line segment LM? Why? 

What can you therefore conclude from this? 
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Figure 2: Analyzing 

In the first case, pupils can again see that angle A = angle D due to a saw being formed. 

Also angle B = angle E due to a ladder. It is then easy for them to observe that since the 

three angles lie on a straight line, that the sum of the angles of triangle ABC must be 

equal to a straight line. They can also observe that this is true at any vertex, as well as for 

any size triangle or orientation, thus enabling generalization. In the second case, the 

exterior angle theorem is introduced and in the third case, the midpoint theorem. Such 

analyses are clearly just a short step away from the standard geometric explanations 

(proofs); all they now need is some formalization. In Figure 3 the three levels are 

illustrated for the discovery and explanation that the opposite angles of a parallelogram 

are equal. 

Level 1: Recognize parms 

 

Level 2: Using ladders & 
saws discovers opp. angles = 

X

X

X Y

Y

Y

 

Level 3:
!!ang. 1 = ang. 2 ... saw
    ang. 1 = ang. 3 ... ladder
=> ang. 2 = ang. 3 

1

2

3

   

Figure 3: Three levels 
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Conceptual Structuring 

A very important aspect of the Van Hiele theory is that it emphasizes that informal 

activities at Levels 1 and 2 should provide appropriate "conceptual substructures" for the 

formal activities at the next level. Though different, this idea is somewhat similar to the 

idea of instructional scaffolding promoted by Wood, Bruner & Ross (1976).  

Teachers often let their students measure the angles of a triangle with a protractor, 

and then let them add the angles (usually disregarding ‘deviations’ as due to experimental 

error) to ‘discover’ that they always add up to 180°.  

A

B C
D

E
  

Figure 4: Using transformations to discover 
However, from a Van Hiele perspective this is entirely inappropriate as it does not 

provide a suitable conceptual substructure in which the eventual logical explanation 

(proof) is implicitly embedded. In comparison, an activity with cardboard tiles or 

Sketchpad like the following from De Villiers (2003) provides such a substructure. For 

example, translate a triangle ABC by vector BC, and rotate triangle ABC around the 

midpoint of AC (see Figure 4). Let the students notice through dragging that the three 

angles at C, D, and E always form a straight line. Then ask students what they can say 

about angles A and B in relation to angles D and E in terms of the transformations carried 

out. Since angle B maps on to angle E by the translation, and angle A maps to angle D by 

the half-turn, angles B and A are equal to angles D and E, respectively. Clearly this 

provides a much more appropriate conceptual structure for an eventual explanation 

(proof) than simply letting students measure some angles of triangles.  

Similarly, the activity of measuring the base angles of an isosceles triangle is 

conceptually inappropriate, but folding it around its axis of symmetry lays the foundation 

for a formal proof later. The same applies to the investigation of the properties of the 

quadrilaterals. For example, it is conceptually inappropriate to measure the opposite 

angles of a parallelogram to let pupils discover that they are equal. It is far better to let 
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them give the parallelogram a half-turn to find that opposite angles (and sides) map onto 

each other, as this generally applies to all parallelograms and contains the conceptual 

seeds for a formal proof. 

 
Figure 5: Using grids to produce tessellations 

Recently I had a conversation with a teacher who quickly dismissed a fellow teacher's 

introduction to tessellations who first let his pupils pack out little cardboard tiles. This 

teacher felt that it produced untidy patterns, was ineffective and time consuming, and that 

one should just start by providing pupils with ready-made square or triangular grids and 

show them how they can then easily draw neat tessellation patterns (see Figure 5). 

Although such grids are a useful and effective way of drawing neat patterns, it is 

conceptually extremely important for pupils to at least have some experience of 

physically packing out tiles, i.e. rotating, translating, reflecting the tiles by hand (or at the 

very least with the aid of dynamic geometry software, illustrating or animating the 

underlying transformations). 

The first problem is that it is possible to draw tessellation patterns on such grids 

without any clear understanding of the underlying isometries by which they can be 

created, which in turn are conceptually important for analyzing the geometric properties 

embedded in the pattern, and eventually for formalizing them into proofs. 

More importantly, according to Bruner this enactive level, where the child 

manipulates materials like tiles directly, is a fundamental prerequisite (just as in the Van 
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Hiele theory), for the iconic level, where the child now begins to deal with mental images 

of objects and no longer needs to manipulate them directly.  

Defining and classifying 

Traditionally most teachers and textbook authors have simply provided students with 

ready-made content (definitions, theorems, proofs, classifications, and so on) that they 

merely have to assimilate and regurgitate in tests and exams. Traditional geometry 

education of this kind can be compared to a cooking and bakery class where the teacher 

only shows students cakes (or even worse, only pictures of cakes) without showing them 

what goes into the cake and how it is made. In addition, they're not even allowed to try 

their own hand at baking! 

 Mathematicians and mathematics educators alike have often criticized the 

direct teaching of geometry definitions with no emphasis on the underlying process 

of defining. The well-known mathematician Hans Freudenthal (1973:416-418) also 

strongly criticized the traditional practice of the direct provision of geometry 

definitions as follows: 

"... the Socratic didactician would refuse to introduce the geometrical objects by 

definitions, but wherever the didactic inversion prevails, deductivity starts with 

definitions. 

... most definitions are not preconceived but the finishing touch of the organizing 

activity. The child should not be deprived of this privilege ... Good geometry 

instruction can mean much - learning to organize a subject matter and learning 

what is organizing, learning to conceptualize and what is conceptualizing, 

learning to define and what is a definition. It means leading pupils to understand 

why some organization, some concept, some definition is better than another." 

 

Just knowing the definition of a concept does not at all guarantee understanding of the 

concept. For example, although a student may have been taught, and be able to recite, the 

standard definition of a parallelogram as a quadrilateral with opposite sides parallel, the 

student may still not consider rectangles, squares and rhombi as parallelograms, since the 
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students' concept image of a parallelogram is that not all angles or sides are allowed to be 

equal.  

According to the Van Hiele theory understanding of formal, textbook definitions 

only develops at Level 3, and that the direct provision of such definitions to students at 

lower levels would be doomed to failure. In addition, if we take the constructivist theory 

of learning seriously (namely that knowledge simply cannot be transferred directly from 

one person to another, and that meaningful knowledge needs to be actively (re)-

constructed by the learner), students ought be engaged in the activity of defining and 

allowed to choose their own definitions at each level. This implies allowing the following 

possible kinds of meaningful definitions for a rectangle at each Van Hiele level: 

Van Hiele 1 

Visual definitions; for example, a rectangle is a figure which looks like this (draws or 

identifies a quadrilateral with all angles 90° and two long and two short sides). 

Van Hiele 2 

Uneconomical definitions; for example, a rectangle is a quadrilateral with opposite sides 

parallel and equal, all angles 90°, equal diagonals, half-turn-symmetry, two axes of 

symmetry through opposite sides, two long and two short sides, etc. 

Van Hiele 3 

Correct, economical definitions; for example, a rectangle is a quadrilateral with two axes 

of symmetry though opposite sides. 

Hierarchical versus Partition Definitions 

Though children at an early age are capable of understanding class inclusions like “cats 

and dogs are animals”, it appears substantially more difficult to accomplish with 

geometric figures. Generally, students' spontaneous definitions at Van Hiele Levels 1 and 

2 as shown above would also tend to be partitional; in other words, they would not allow 

the inclusion of the squares among the rectangles (by explicitly stating two long and two 

short sides). In contrast, according to the Van Hiele theory, definitions at Level 3 are 

typically hierarchical, which means they allow for the inclusion of the squares among the 

rectangles, and would not be understood by students at lower levels. 
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 In traditional instruction children are mostly introduced to rectangles, rhombi, 

parallelograms, etc. as ‘static geometric objects’. For example, a rectangle might be 

introduced by comparison to the shape of a door or a static picture in a book, but a door 

or a picture in a book cannot be transformed into a square (unless parts are cut off). So 

the concept rectangle is from the start introduced as a concept completely disjoint from a 

square. Unfortunately this partition classification schema then becomes entrenched and 

fossilized over time, and appears very resistant to change. 

 The conceptual difficulty of geometric class inclusion was already shown by 

Mayberry (1981) who found that only 3 out of 19 preservice mathematics teachers 

indicated squares also as rectangles on a sheet of some given quadrilaterals. Though valid 

criticism can be raised against some of questions used by Mayberry, as well as by Usiskin 

(1982) to evaluate hierarchical thinking, since given a set of different quadrilaterals, 

students might just mark the most general quadrilateral (e.g. a general parallelogram) 

when asked to mark it, simply not knowing or realizing the intention of the question was 

that all the special cases (e.g. rectangles, rhombi & squares) had to be marked as well.  

In research conducted by De Villiers & Njisane (1987) with 4015 students from 

KwaZulu (South Africa) with some modified questions for evaluating hierarchical 

thinking (see Figure 6 for an example), some small improvement was observed. 

Nonetheless, it was found that very little progress occurred in their hierarchical thinking 

from Grade 9 to Grade 12, only ranging from 0.5% to 5.1% success with a 50% criterion 

on test items evaluating hierarchical thinking. This contrasts starkly with Van Hiele 3 

proficiency levels in one-step and two-step deductions that respectively improved from 

2.5% and 0.2% in Grade 9 to 63.3% and 42.6% in Grade 12. More recent findings by 

Atebe & Schäfer (2008) with a group of Nigerian and South African similarly showed 

that class inclusions of quadrilaterals among the investigated group from Grades 10-12 

were almost completely absent. 
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Figure 6: Testing class inclusion 

Formal Van Hiele Level 3 definitions in textbooks are often preceded by an activity 

whereby students have to compare in tabular form various properties of the 

quadrilaterals, designed with the intention to assist students to see that a square, rectangle 

and rhombus have all the properties of a parallelogram, and that they therefore could be 

viewed as special cases. However, research reported in De Villiers (1994) shows that 

many students, even after doing tabular comparisons and other activities, if given the 

opportunity, still preferred to define quadrilaterals in partitions. (In other words, they 

would for example still prefer to define a parallelogram as a quadrilateral with both pairs 

of opposite sides parallel, but not all angles or sides equal).   

For this reason, it seems that students should be allowed to formulate their own 

definitions irrespective of whether they are partitional or hierarchical. By then discussing 

and comparing in class the relative advantages and disadvantages of these two different 

ways of classifying and defining quadrilaterals (both of which are mathematically 
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correct), students may be led to realize that there are certain advantages in accepting a 

hierarchical classification. For example, if students are asked to compare the following 

two definitions for the parallellograms, they might realize that the former is more 

economical than the latter: 

hierarchical: A parallelogram is a quadrilateral with both pairs of opposite sides 

parallel. 

partitional: A parallelogram is a quadrilateral with both pairs of opposite sides 

parallel, but not all angles or sides equal. 

Clearly, partitional definitions are longer since they have to include additional properties 

to ensure the exclusion of special cases. Another advantage of a hierarchical definition 

for a concept is that all theorems proved for that concept then automatically apply to its 

special cases. For example, if we prove that the diagonals of a parallelogram bisect each 

other, we can immediately conclude that it is also true for rectangles, rhombi and squares. 

If however, we classified and defined them partitionally, we would have to prove 

separately in each case, for parallelograms, rectangles, rhombi and squares, that their 

diagonals bisect each other. Clearly to reproduce all these proofs is clearly very 

uneconomical. It seems clear that unless the role and function of a hierarchical 

classification is meaningfully addressed in class, many students will have difficulty in 

understanding why their intuitive, partitional definitions are not used. 

 Engaging students in defining geometric concepts like the quadrilaterals also 

provide valuable opportunity for students to learn how to construct counter-examples to 

incomplete or wrong definitions that they may come up with. For example, to be able to 

show that “a kite is a quadrilateral with perpendicular diagonals” is an incomplete 

definition to finding a quadrilateral with perpendicular diagonals that is not a kite. 

One common difficulty students have in producing correct counterexamples to 

incomplete definitions is that they often try to refute a definition with a special case. For 

example, for the incorrect definition “a rectangle is any quadrilateral with congruent 

diagonals,” some students will provide a square as a counterexample. But obviously a 

square is not a valid counterexample, because a square is a rectangle. 

Therefore, students should already have developed a sound understanding of a 

hierarchical (inclusive) classification of quadrilaterals before being engaged in formally 
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defining the quadrilaterals themselves (Craine & Rubenstein, 1993; Casa & Gavin, 2009). 

This development can be fostered by using interactive geometry software, figures created 

with flexible wire, or paper-strip models of quadrilaterals. Indeed, working with a group 

of five Grade 6 students using flexible wire and paper strip models, Malan (1986) found 

that they all were eventually able to successfully make hierarchical class inclusions of the 

quadrilaterals. In addition, he found that the language used for describing class inclusions 

was an important factor (e.g. calling a square a special rectangle). 

A B

D C

A B

D C

A B

D C

A B

D C

 
Figure 7: Dynamic transformation of parallelogram 

Specifically, the dynamic nature of geometric figures constructed in dynamic software 

like Sketchpad may make the acceptance of a hierarchical classification of the 

quadrilaterals far easier at lower Van Hiele levels. For example, if students construct a 

quadrilateral with opposite sides parallel, then they will notice that they could easily drag 

it into the shape of a rectangle, rhombus or square as shown in Figure 7. In fact, it seems 

quite possible that at least some students would be able to accept and understand this 

even at Van Hiele Level 1 (Visualization), but further research into this particular area is 

needed. It is quite possible too that student difficulties with hierarchical class inclusion is 

largely the result of traditional instructional practices, something already observed by 

Mayberry (1981:8) when she wrote: “It is conceivable that the observed levels are an 

artifact of the current curriculum or the instruction given to the students …” 
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The author has developed an experimental Java applet at 

http://math.kennesaw.edu/~mdevilli/quadclassify.html where the most common 

quadrilaterals are not introduced via formal definition, but simply introduced visually. 

Through guided dragging it is envisaged that a child at Van Hiele 1 may, for example, 

more easily develop a dynamic concept image of a rectangle as one that can change into a 

square when all its sides become equal. Teachers and researchers are invited to try out 

these activities and any feedback or reports are most welcome. 

 

Construction and Measurement 

It should first be pointed out that certain kinds of construction activities (with dynamic 

geometry software or by pencil and paper) are inappropriate at Van Hiele Level 1. For 

example, someone was recently overheard at a conference commenting that she was 

unpleasantly dismayed at how difficult young children found the task of constructing a 

"dynamic" square with Sketchpad. However, if the children were still at Van Hiele Level 

1, then it is not surprising at all—how can they construct a square if they do not yet know 

its properties (Level 2) and that some properties are sufficient and others not (that is, 

know the logical relationships between the properties—Level 3)? 

In fact, at Van Hiele Level 1 it would appear to be far more appropriate to provide 

children with ready-made sketches of quadrilaterals in dynamic geometry software, 

which they can then easily manipulate and first investigate visually. Next, they could start 

using the measure features of the software to analyze the properties (and learn the 

appropriate terminology) to enable them to reach Level 2. Only then would it be 

appropriate to challenge them to construct such dynamic quadrilaterals themselves, thus 

assisting the transition to Level 3. 

In other words, students who are predominantly at Van Hiele Level 2 cannot yet 

be expected to logically check their own descriptions (definitions) of quadrilaterals, but 
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they should be allowed to do so by accurate construction and measurement. For example, 

students could evaluate the following attempted descriptions (definitions) for a rhombus 

by construction and measurement as shown in Figure 8: 

(1)  A rhombus is a quadrilateral with all sides equal. 

(2) A rhombus is a quadrilateral with perpendicular, bisecting diagonals. 

(3) A  rhombus is a quadrilateral with bisecting diagonals. 

(4)  A rhombus is a quadrilateral with one pair of adjacent sides equal and both pairs 

of opposite sides parallel. 

 

Figure 8: Construction & measurement 

In the first example, students should construct a quadrilateral so that all four sides are 

equal, and then could notice that the diagonals always bisect each other perpendicularly, 

irrespective of how they drag it. This clearly shows that the property of "perpendicular 

bisecting diagonals" is a consequence of their constructing "all four sides equal.” On the 

other hand, such testing also clearly shows when a description (definition) is incomplete 

(contains insufficient properties), as in the third example above.  

Conceptually, constructions like these are extremely important for assisting the transition 

from Van Hiele Level 2 to Van Hiele Level 3. It helps to develop an understanding of the 

difference between a premise and conclusion and their causal relationship; in other 

words, of the logical structure of an "if-then" statement. For example, statement 4 could 

be rewritten by students as: "If a quadrilateral has one pair of adjacent sides equal and 
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both pairs of opposite sides parallel, then it is a rhombus (that is, has all sides equal, 

perpendicular bisecting diagonals, and so on)". Smith (1940) reported marked 

improvement in students' understanding of "if-then" statements after letting them make 

constructions to evaluate geometric statements as follows: 

"Pupils saw that when they did certain things in making a figure, certain other 

things resulted. They learned to feel the difference in category between the 

relationships they put into a figure - the things over which they had control - 

and the relationships which resulted without any action on their part. Finally 

the difference in these two categories was associated with the difference 

between the given conditions and conclusion, between the if-part and the then-

part of a sentence." 
 

Proof Phases in Geometry Education 
According to the Van Hiele theory, for learning to be meaningful, students should 

become acquainted with, and explore, geometry content in phases which correspond to 

the Van Hiele Levels. A serious shortcoming of the Van Hiele theory, however, is that 

there is no explicit distinction between different possible functions of proof. For example, 

the development of deductive thinking appears first within the context of systematization 

at Van Hiele Level 3 (Ordering). Empirical research by De Villiers (1991) and Mudaly & 

De Villiers (2000) seem to indicate, however, that the functions of proof such as 

explanation, discovery and verification can be meaningful to students outside a 

systematization context, in other words, at Van Hiele Levels lower than Van Hiele Level 

3, provided the arguments are of an intuitive or visual nature; for example, the use of 

symmetry or dissection.  

From experience, it also seems that a prolonged delay at Van Hiele Levels 1 and 2 

before introducing proof actually makes introducing proof later as a meaningful activity 

even more difficult. Below are four example activities sequenced to not only correspond 

to the Van Hiele levels, but also to incorporate a distinction between some different 

functions of proof at these levels.  



Invited plenary presented at the 4th Congress of teachers of mathematics of the Croatian Mathematical Society, Zagreb, 
30 June –2 July 2010, as well as at the National Mathematics Congress in Namibia, Swakopmund, 21-23 May 2012. 
Also presented as public lecture in the Program Post-Graduate Studies in Mathematics Education, Pontifical Catholic 

University of São Paulo, Brazil. 19 April 2010. 

 

 

Activity 1: Exploration of properties of a kite 

In this activity students use Sketchpad to first construct a kite by using reflection, and 

then explore its properties (for example, angles, sides, diagonals, circum circle). By 

dragging, students also explore special cases (rhombus, square). 

• involves Van Hiele Level 1 (visualization) and Van Hiele Level 2 (analysis and 

formulation of properties) 

• opportunity for class inclusion of rhombi and squares by dragging is provided 

• properties of kite are explained (proved) in terms of reflective symmetry 

   

 
Construct 

1. Draw a line through two points, and then any point not on the line. 

2. Reflect the "outside" point in the line. 

3. Connect corresponding points to obtain a quadrilateral as shown above. 

 

Investigate 

1. Make conjectures regarding the following properties of the above figures: 

 (a) sides 

 (b) angles 

 (c) diagonals 
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 (d) inscribed or circumscribed circle 

2. Can the above figure sometimes be a parallelogram, rectangle, rhombus or 

square? 

3. Logically explain your conjectures in Question 1 in terms of symmetry. 

 

Activity 2: Constructing midpoints of sides of kite 

Students construct the midpoints of the sides of a dynamic kite and explore the kind of 

figure formed (leading to the conjecture that it is a rectangle). 

• That midpoints form a rectangle is explained in terms of perpendicularity of 

diagonals, leading to the discovery that this would be true for any quad with 

perpendicular diagonals 

 

Construct and connect the midpoints of the sides of a kite. 

A

C

B D

H

GF

E

 

1. Investigate the type of quadrilateral formed by the midpoints of its sides. 

2.  Logically explain your conjecture. 

3. From Question 2, can you find/construct another more general type of 

quadrilateral that will have the same midpoint property? 

 (The result generalizes to any quadrilateral with perpendicular diagonals). 

 

Activity 3: Describing (defining) a kite 
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Students select different subsets of the properties of a kite as possible descriptions 

(definitions), and first check whether they are necessary and sufficient by using them in a 

Sketchpad construction, and then by logical reasoning (proof). 

• involves Van Hiele Level 3 (local ordering) 

• the explicit function of proof here is systematization (that is, the deductive 

organization of the properties of a kite). 

• involves the mathematical process of descriptive defining 

 

The kite has the following properties: 

a. (At least) one line of symmetry through a pair of opposite angles 

b. Perpendicular diagonals (with at least one bisecting the other) 

c. (At least) one pair of opposite angles equal 

d. Two (distinct) pairs of adjacent sides equal 

e. (At least) one diagonal bisecting a pair of opposite angles 

f. Incircle 

 

1. How would you over the phone explain what "kites" are to someone not yet 

acquainted with them? (Try and keep your description as short as possible, but 

ensure that the person has enough information to make a correct drawing of the 

quadrilateral). 

2. Try formulating two alternative descriptions. Which of the three do you like best? 

Why? 

 

Results from Govender & De Villiers (2003), De Villiers (1998, 2004) and Sáenz-

Ludlow & Athanasopoulou (2007) do indicate some improvement and positive gains in 

student understanding of the nature of definitions, as well as in their ability to define 

geometric concepts such as quadrilaterals themselves. 
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Activity 4: Generalizing or specializing a kite 

Students generalize by leaving out some of the properties and specialize by adding more 

properties. The properties of the newly defined objects are then explored by construction 

on Sketchpad and/or by deductive reasoning. 

• involves Van Hiele Level 4 (global ordering) 

• involves the mathematical process of constructive defining 

 

1. Generalize the concept "kite" in different ways by leaving out, altering or 

generalizing some of its properties. 

 (One possibility is to generalize to a 2n-gon; ie. a polygon with at least one axis 

of symmetry through a pair of opposite angles. Other possibilities are to generalize to a 

quadrilateral with at least one pair of adjacent sides equal, to one with one diagonal 

bisected by the other, or to one circumscribed around a circle - a circum quad). 

2.  Specialize the concept "kite" in different ways by the addition of more properties. 

 (Possibilities to consider are a kite inscribed in a circle, a kite with at least three 

equal angles, or a kite with another axis of symmetry through a pair of opposite angles - 

a rhombus). 

 

The briefly-described activities above are intended as examples of how students can be 

engaged in proof at levels lower than Van Hiele Level 3. Examples of more fully 

developed proof and defining activities are available in De Villiers (2003 & 2009). 

Defining quadrilaterals also provide an excellent context for introducing and developing 

students’ understanding of necessary and sufficient conditions as discussed and illustrated 

in De Villiers et al (2009). The study by Atebe & Schäfer (2008), for example, showed 

how students frequently mistook necessary for sufficient conditions in the context of 

quadrilaterals.  

 

Van Hiele levels in other areas 

The purpose of this section is to give a few examples of the application of the general 

Van Hiele levels of thinking to other areas in mathematics as suggested by Hoffer (1981). 
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Analogous to the Van Hiele model for geometry (Van Hiele, 1973), the following 

conjectured thought levels for Boolean Algebra evolved from an experimental course for 

Boolean Algebra that was developed in the period 1978 -1985 (De Villiers, 1986). 

Level 1 (Interpretation & representation of switching circuits) 

Children are able to connect switches in series and/or parallel circuits from given 

diagrammatic representations, and vice versa. They are, however, not yet able to discern 

nor symbolize any of the properties of switching circuits like the distributive property, De 

Morgan’s laws, absorption laws, etc. 

Level 2 (Analysis of switching properties) 

Children now begin to analyze and become conscious of the various structural properties 

of switching circuits, and are able to verbalize or symbolize them. They are able to apply 

these properties in solving practical properties such as simplifying switching circuits or 

designing new ones. However, at this level they are still unable to see the logical 

relationships (implications) between the various properties. The meaning of proof is one 

of justification, e.g. checking the validity of ‘non-obvious’ properties like 

! 

f + f " g = f + g  by experimental verification or the consideration of all possibilities 

through the completion of truth tables. 

Level 3 (Logical Implication: deduction) 

Now children become aware of the logical relationships between the various switching 

properties; in other words, that certain properties may be derived from others. The ability 

to do deductive proofs, to axiomatize and systematize and the development of an 

understanding of the significance of axioms, characterizes this level. Proof now assumes 

new meaning, namely that of systematization of mathematical statements into a logical 

system. 

 

Through investigations of the development of students' language for describing functions 

and the history of the description of motion and the development of calculus, Isoda 

(1996) has proposed the following thought levels of ‘language about functions’.  

Level 1 (Level of Everyday Language)  

Students describe relations in phenomena using everyday language obscurely. They can 

discuss changes in numbers using calculations, but usually their descriptions are done 
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with or focused on one physically evident variable, the dependent variable. Even if they 

are aware of co-variation, it is difficult for them to explain it appropriately using two 

variables because their descriptions of relations are done obscurely, using everyday 

language. So it is difficult for them to compare different phenomena at once, 

appropriately. 

Level 2 (Level of Arithmetic) 

Students describe the rules of relations using tables. They make and explore tables with 

arithmetic. Their descriptions of relations in phenomena are more precise with tables than 

with the only everyday language of Level 1. Students have general concepts about some 

rules of relations, for instance, proportion. Students can compare different phenomena 

using such rules. They describe rules of relations as co-variation and when reading tables, 

their interpretation of the co-variation of variables is at least as strong as their 

interpretation of correspondence. Students can use formulas and graphs to represent rules 

and relations too, but it is not easy for them to translate between notations.  

Level 3 (Level of Algebra and Geometry) 

Students describe functions using equations and graphs. To explore function, they 

translate among the notations of tables, equations and graphs and use algebra and 

geometry. At this level, their notion of function, which they already understand well, 

involves the representation of different notations already integrated as the mental image. 

For example, they can easily find the equation emerging from the graph, and the graph 

from the equation.  

Level 4 (Level of Calculus) 

Students describe and investigate the behaviour of functions using calculus. In calculus, 

functions are described in terms of derived or primitive functions. For example, to 

describe the features of a function we use its derived function (derivative), which is 

already learned. The theory of calculus is a generalized theory of this type of description.  

Level 5 (Level of Analysis) 

An example of language for description is functional analysis, which is a meta-theory of 

calculus. This level's justification is based on historical development and not yet 

investigated. 
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The following Van Hiele levels of understanding has been conjectured for 

trigonometry by myself and a master’s student, Janeeshla Jugmohan, by way of analogy 

from the levels for geometry to serve as a possible learning trajectory. 

Level 1 (Visualisation) 

The learner is able to recognize a right triangle in different orientations and distinguish 

between scalene and isosceles right triangles, and identify a right triangle in the unit 

circle.  Ability is shown to correctly recognize the ‘opposite’, ‘adjacent’ and ‘rectangular’ 

sides in various orientations, as well as the hypotenuse of a right triangle.   

Level 2 (Analysis) 

The learner now realizes that in a right triangle, for a fixed angle, the ratios between any 

two sides remain the same, irrespective of the size of the triangle (which is the concept of 

similarity). Conversely, understanding of the inverse function develops, for example 

2
1sin =x  =! x ? Students are now able to begin solving some practical and theoretical 

problems related to right triangles using trigonometric ratios.  

Level 3 (Primitive Definition) 

The aforementioned discoveries now become formalised as definitions in terms of ratios 

of sides of right triangles. Learners develop understanding of the increasing or decreasing 

nature of the trigonometric functions for angles up to 180 degrees, as well as of the 

associated inverse functions.   

Level 4 (Circle Definition) 

Understanding of the abstract definition of trigonometry as a function in the domain of 

the real numbers develops in terms of the unit circle.  The unit circle definition defines 

trigonometric functions in terms of coordinates x and y, and essentially become 

independent of the right triangle. Learners develop understanding of the periodicity and 

the graphical representation of trigonometric functions, as well as of trigonometric 

identities and the ability to prove them.  

Level 5 (Spherical Trigonometry, etc.) 

The progression can be extended further to spherical trigonometry, which is the 

trigonometry on the sphere, and could be extended to other surfaces, hyperbolic 

functions, for example, sinh, cosh, as well as the analytic treatment of the trigonometric 
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functions such as transcendental functions, etc. This may include the definitions of 

trigonometric functions as different infinite series, and to the application of Fourier and 

other series to different parts of mathematics and physics. 

 

Land (1990) considered the application of the Van Hiele theory to the teaching of 

exponential and logarithmic functions, and Nixon (2002) analogously conjectured levels 

of learning and understanding sequences and series. From an analysis of the historical 

development of abstract algebra, Nixon (2005) conjectured the following possible spiral 

learning trajectory for abstract algebra:  

Level 1 (Perceptual) 

The focus is on learning different methods for solving certain types of equations, e.g. 

linear, quadratic & cubic polynomials by the balance algorithm, factorization, completion 

of the square, etc. 

Level 2 (Conceptual) 

Here there is a shift away from analyzing individual solution methods towards 

considering the relations or transformations between them. For example, realizing that all 

solution methods for polynomials involve algebraically reducing the original equation 

and considering the various ways it can be permuted. Complex algebra, the fundamental 

theorem of algebra and the work of Gauss on the composition of forms are accessible to 

students at this level. 

Level 3 (Abstract) 

At this level, the group concept can be introduced as a way of understanding and 

organizing the symmetries of a polynomial, and of distinguishing which polynomial 

equations are solvable algebraically. Rings and fields can now be introduced as further 

extensions on ways of investigating and comparing different algebraic structures. 

 

Gutierrez, Pegg & Lawrie (2004) also developed characterizations of students’ Van Hiele 

thinking levels in three-dimensional geometry to analyze the answers of 299 students in 

Grades 7 to 11 (aged 12 to 17 years) in New South Wales (Australia). Interestingly, some 

students had difficulty seeing a cube as a rectangular prism in much the same way they 
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have difficulty perceiving a square as a rectangle. More-over, several confused a 

statement with its converse, and very few were able to produce formal proofs. 

 

Concluding comments 

The hierarchical, fixed order of progression through the Van Hiele levels (i.e. a pupil 

cannot be at level n without having passed through level n-1) have been statistically 

confirmed using Guttman analysis by several studies, for example, Mayberry (1981), 

Usiskin (1982) and De Villiers (1987). A comparative study by Smith & De Villiers 

(1989) of the Usiskin (1982) test and the University of Stellenbosch (1984) test further 

confirmed not only the hierarchical nature of the first three levels, but indicated that 

better classifications of students’ thinking levels were obtained when more varied 

questions and more ‘open-ended’ items are used. 

 Pegg & Davey (1989) did a comparative study of the Van Hiele theory and the 

SOLO Taxonomy and found the descriptors of the latter more accurately described the 

geometric thinking levels of students. It is, however, still an open moot point whether 

such an achieved gain in ‘accuracy’ is worthwhile with the increased complexity of the 

Solo Taxonomy. 

More research needs to be done on how using dynamic geometry software can 

enhance, or perhaps even impair, the development of geometric thinking. The use of 

dynamic geometry software with an experimental group of Malaysian students is reported 

in Idris (2009) to have contributed to them achieving higher Van Hiele levels than a 

control group who were taught traditionally without access to dynamic geometry. 

A main concern of geometry education around the world is the continued poor 

level of geometric thinking among teachers themselves, and until this problem is 

adequately addressed, very little progress in the quality of geometry instruction is likely 

to be achieved. For example, Van Putten (2008) found in a post-test, that only 45% of 

pre-service FET (grades 10-12) teachers had reached Van Hiele Level 3 (though there 

was significant improvement from the pre-test). 

Traditionally, the development of ‘proof ability’ is seen to occur from Van Hiele 

3 Level onwards. Moreover, the Van Hiele model sees proof mainly as a means of 

‘verification’, and it remains an open research question whether or not other functions of 
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proof such as ‘explanation’ can be utilized and developed earlier at the visual and 

analytic Levels 1 and 2 respectively (see for example Mudaly & De Villiers, 2000; De 

Villiers, 2004). Can more explanatory visual-dissection proofs and arguments by 

symmetry (line, rotational, point) be developed and understood earlier by children? 

Lastly, it seems one of the major outstanding research problems on the Van Hiele 

theory is the issue of hierarchical thinking (class inclusions). Is partition thinking the 

consequence of traditional geometry teaching strategies, and could hierarchical thinking 

be developed earlier at Van Hiele levels 1 and 2 through various strategies and using 

tools such as dynamic geometry software?  
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