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Vertical line and point symmetries of differentiable
functions

by MICHAEL D. DE VILLIERS
Faculty of Education, University of Durban-Westville,

Durban 4000, South Africa

(Received 18 June 1990)

A heuristic account is given of the author's personal investigation of some
aspects of the vertical line and point symmetries of differentiable functions.
Starting from examples of third degree polynomials there is first generalized to
polynomials in general, and later even more generally to differentiable functions.
The role of quasi-empirical testing is demonstrated throughout, not only in the
gaining of confidence in conjectures, but also in improving them through the
production of counter-examples. In some examples the role of deductive proof is
also clearly shown to be far less that of verification than that of explanation,
systematization and/or discovery.

Symmetry, as wide or as narrow as you may define it, is one idea by which man through
the ages has tried to comprehend, and create order, beauty and perfection. (Hermann
Weyl).

1. Introduction
Unfortunately in reporting the results of their investigations mathematicians

invariably use the so-called 'deductivist style'. This is regrettable mainly for two
reasons, the one more philosophical and the other more didactical. Firstly it sheds no
light on the actual process of mathematical discovery and suggests to the uninformed
that new discoveries in mathematics are always made by purely deductive reasoning.
Secondly, this style in the words of Lakatos ([1], p. 102) 'hides the struggle, hides the
adventure . . . ' and 'an authoritarian air is secured for the subject by beginning with
disguised monster-barring and proof-generated definitions and with the fully
fledged theorem, and by suppressing the primitive conjecture, the refutations, and
the criticism of the proof.

In contrast to the deductivist style stands the 'heuristic style' which does not one-
sidedly focus only on the finished end-product, but tries to illuminate the gradual
evolution of mathematical ideas from their ancestral primitives. The heuristic
approach therefore usually discusses among other things, the original motivating
problem-situation, the interplay between intuitive and formal reasoning, false
generalizations, incomplete proofs and finally the significance and utility of the
discovered or invented results. Critics of this approach, however, usually say that
mathematical papers and text-books would then be far too long and comprehensive
to read to the end. But as Lakatos ([1], p. 144) has said: 'The answer to this pedestrian
argument is: let us try.' In presenting this paper I make a modest attempt at the
heuristic style in preference to the deductivist style.

0020-739X/91 $3.00 © 1991 Taylor & Francis Ltd.
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622 M. D. de Villiers

2. The original problem
Symmetry as we know abounds in nature, e.g. in the snowflake, the arrangement

of the petals of a flower and the leaf of a tree. It is often also employed by artists to
create visually pleasing configurations. Similarly, I have always found it visually
pleasing and intellectually satisfying to discover graphs with line symmetry and/or
points of symmetry and to investigate their properties. What follows is the
distillation of some personal ideas on the symmetries of differentiable functions.

Traditional textbooks for first year college mathematics like Allendoerfer and
Oakley [2] and Ayres [3] basically discuss the symmetries of graphs only in relation to
the coordinate axes or other lines through the origin (reflective symmetry) and the
origin itself (point symmetry). For instance, a function y=f(x) is defined to be
symmetric around the;y-axis if and only if y=/(x)oy =f( — x) and point symmetric
in relation to the origin if and only if y =f(x)oy = —/( — x). (Note that if a graph is
point symmetric in relation to the origin, it is invariant under a half-turn (a rotation
of 180°) around the origin.) In relation to a graph of a cubic polynomial such as the
one shown in Figure 1, traditional textbooks therefore either make no mention of any
symmetry (e.g. [3], p.98) or explicitly state 'There is no symmetry...' (e.g. [2],
p. 394).

3. Solution
However, looking at the graph of the function shown in Figure 1, I intuitively

visualized a point of symmetry approximately between x=\ and x = 2. How
could I find this point of symmetry and prove that it was one? After some
consideration I hypothesized that if the graph was point symmetric with regard to a
certain point, its gradient to the left of that point must be the same as the gradient to
the right of that point; i.e. reflective symmetric. By roughly drawing the derivative
dy/dx = 3x2 — 8x — 3 on the same axes I then realized that the point of symmetry must
lie on the line of symmetry of the derivative. The substitution of the vertical line of
symmetry for the derivative, namely x=4/3 into the original function, thus gave me a
hypothesized point of symmetry, namely (4/3; 250/27). To prove that this was

y = x 3 - 4 x 2 - 3 x + 1 8

fy= ( x + 2 ) ( x - 3 ) 2

Figure 1.
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Symmetries of differentiable functions 623

indeed a point of symmetry one needed only to translate the function to the origin
and test for point symmetry in relation to the origin. For example, the transformed
equation is:

;y = (* + 4/3 + 2)(x+4/3-3)2-250/27

which simplifies to:

= x3-(25l3)x

However, this equation is equivalent to y= — ((—x)3 — (25/3)(—x)) and therefore
proves that the point (4/3; 250/27) is a point of symmetry of the graph of the original
equation.

4. Other problems and generalizations
After considering some more cubic polynomials and investigating them for

possible points of symmetry, I eventually hypothesized that 'all third degree
polynomials are point symmetric around a point (a; f(a)) where x = a is the vertical
line of symmetry of the derivative'. (Obviously the fact that all parabola are reflective
symmetric, also strongly encouraged this hypothesis.) A proof of this result is given
in De Villiers [4].

The next step was to investigate some quartic polynomials for vertical lines of
symmetry, for example, graphs likey = x*—x2 as shown in Figure 2. In this case the
graph is symmetric around the jy-axis (x = 0), while the derivative dy/dx = 4x3 — 2x is
point symmetric around the origin (0; 0). Furthermore, translations of the graph of
y = x* — x2 to various positions in the plane shifts its vertical line of symmetry, but the
derivative remains point symmetric with its point of symmetry moving with the
vertical line of symmetry of the original function. At this point, I therefore made the
bold intuitive leap to the following two generalizations:

(1) If a polynomial function is reflective symmetric, then its derivative is point
symmetric.

(2) If a polynomial function is point symmetric, then its derivative is reflective
symmetric.

- 2x

Figure 2.
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624 M. D. de Villiers

y = nx + c

Figure 3.

dy
d sin x ,y=cos x

• ^ y = c

dx = 0

Figure 4.

5. Special cases
To quickly check these two conjectures I next considered the two special cases

shown in Figure 3. In the first case, the line y = mx + c has an infinite number of
points of symmetry, namely all the points on the line, while its derivative dyldx = m
on the other hand, has an infinite number of vertical lines of symmetry (as well as an
infinite number of points of symmetry). In the second case the line y = c has an
infinite number of vertical lines of symmetry as well as an infinite number ofpointsof
symmetry while the derivative also has both an infinite number of points of
symmetry and an infinite number of lines of vertical symmetry. The second case thus
confirms both conjectures at the same time!
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Symmetries of differentiable functions 625

6. Extension and checking
What about functions other than polynomials? Or are these conjectures restricted

to polynomial functions only? Proceeding to check these conjectures with the graphs
of some other functions such as those shown in Figure 4, I soon realized that it did
not seem to be restricted to the polynomial functions alone, but seemed to apply to all
differentiable functions. To convince myself with regard to their validity for any
composite function, I proceeded to check these conjectures for the following two
cases:

(1) j> = tana: = sina:/cos3: (point symmetry at (0;0))

dx/dy = l/cos2a; (symmetric around x = 0)

(2) y = (9-x2)112 (symmetric around x = 0)

dyjdx = —xl(9 — xz)1/2 (point symmetry at (0;0)).

7. Counter-example and further generalization
Although the converse of the second conjecture also seemed valid in all cases, I

soon realized that the converse of the first conjecture (as stated above) was not
necessarily valid. For example, if we consider the graph of y = x4 —x as shown in
Figure 5, we find that it does not have vertical line symmetry, although its derivative
dy/dx = 4x3 — 1 has a point of symmetry at (0; — 1). Note that the first case in Figure 3
also provides another counter-example where the derivative dyldx = m has an infinite
number of points of symmetry, but y — mx + c has no vertical line of symmetry. For a
function to be symmetric around a vertical line, it is therefore a necessary but not

y = x - x

Figure 5.
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626 M. D. de Villiers

sufficient condition that its derivative is point symmetric: it is a necessary and
sufficient condition if and only if the point of symmetry of the derivative lies on the
#-axis. I consequently reformulated my two earlier conjectures as follows:

(1) A differentiable function y=f(x) is reflective symmetric around a vertical
line x = a if and only if its derivative dyjdx =f'(x) is point symmetric around
the point (a; 0).

(2) A differentiable function y =f(x) is point symmetric around a point (a; b) if
and only if its derivative dy/dx =f'(x) is reflective symmetric around the
vertical line x = a.

What is especially appealing about these two conjectures above are that they exhibit
an elegant duality between reflective symmetry and point symmetry, and thus also
between vertical line and point. They also have the following two useful corollaries,
namely:

(3) A differentiable function is reflective symmetric around a vertical line x = a if
and only if its second derivative is reflective symmetric around the same line
x = a (and the first derivative is point symmetric at (a;0)).

(4) A differentiable function is point symmetric around a point (a; b) if and only
if its second derivative is point symmetric around the point (a; 0).

It should also be emphasized at this point that with a differentiable function is not
meant here a function that is necessarily differentiable for all x (and therefore
continuous V*), but includes functions like y=\jx (see second figure in Figure 4) not
differentiable at certain values of x (e.g. x = 0). From my experience with polynomial
functions, I then intuitively sensed that if a point symmetric function was known to
be differentiable V*, its point of symmetry had to lie on the function itself. Thus, if
the function referred to in conjecture (2) above was differentiable (and therefore
continuous) Vx, it would be point symmetric specifically around (a; f(a)), and not
just some general point (a; b).

8. Intuitive geometric proofs
But how could one explain conjectures (1) and (2)? Although a great amount of

quasi-empirical testing may provide one with a lot of confidence, it cannot however
by itself, provide insight into why the conjectures are true. Geometrically they seem
quite obvious when one considers the two cases shown in Figure 6, in each case for
both a continuous and a discontinuous graph. In the first case, if y=f(x) is reflective
symmetric around x = a it means that the graph to the left of x = a must fit exactly on
the graph to the right of x = a, and vice versa. Therefore they-values of the graphs
respectively to the left and right of x = a are exactly equal in sign and size, and local
minima and maxima on the left correspond exactly with those on the right. However
the gradient (derivative) of the graph to the left of x = a is opposite in sign to the
gradient (derivative) to the right of x = a, although equal in size. For example, the
derivative of the graph on the left of x = a is negative when the derivative of the
corresponding part of the graph to the right of x = a is positive, and vice versa. The
same applies for example to the local maxima and minima of the derivatives to the left
and right of x = a, where local maxima on the left (e.g. at A) corresponds exactly to
local minima at the right (e.g. at A'), and vice versa. However, these are the
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Symmetries of differentiable functions dill

reflective symmetric point symmetric

A"

= f(x)

ly=f(x)

X

\

1

= a .

r
I/, V

x) r
(a;b)J
---r

I

y=f(x)

Figure 6.

properties of a graph which is point symmetric at (a; 0) (see second case below), and
it therefore means that the derivative in the first case is point symmetric at (a; 0).

Similarly, in the second case if y=f(x) is point symmetric with regard to (a; b),
the graph to the left of x = a can be made to fit exactly on the graph to right of x = a by
a half-turn (a rotation through 180°), and vice versa. Therefore, local minima to the
left of x = a correspond exactly to local maxima to the right of x = a, and vice versa,
but the y-values of the graph to the left and right of x = a are exactly equal in size and
opposite in sign only if the point of symmetry lies on the x-axis (e.g. at (a; 0)). (See
first case above.) Let's now consider the gradient (derivative) of the function y =f(x)
as given in the second case. Clearly in this case the gradient (derivative) of the graph
to the left of x = a is exactly equal to the gradient (derivative) to the right of x = a, not
only in size but also in sign. Note that local minima and maxima of the derivative on
the left correspond exactly with those on the right. For example, the local minimum
on the left at A corresponds exactly with the local minimum on the right at A'. Since
these are the properties of a graph which is reflective symmetric around x = a (see
first case above), it means that the derivative in the second case is reflective
symmetric around x = a.

The proofs of the converses are now quite simple: by integrating Ayjdx=f'(x) in
either case, we obtain y =f(x) + c, which means that it is simply a vertical translation
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628 M. D. de Villiers

( a ; g ( a ) )
y =g(x)

,= f (x )

( a ; f ( a ) )

-•» x

Figure 7.

of the original graph of y =f(x) with a value of c. However, this translation clearly
does not affect the symmetric properties of the original graph and therefore
completes the proof in both cases.

To set about proving the conjecture that the point of symmetry of a point
symmetric function y =f(x) which is differentiable Vx, lies on the function itself, I
used the first sketch shown in Figure 7. Suppose its point of symmetry, namely (a; b),
did not lie on the function y =f(x) itself, but somewhere outside the function as
shown. Then a rotation of y=f(x) through 180° around the point (a; b) gives us the
image y =g(x). But according to the definition of point symmetry, this image y =g(x)
must coincide with the original function, which means that the original function
must have consisted of two separate parts y=f(x) and y=g(x). This is however
clearly a contradiction, since we would then have had two different images y=f(a)
and y=g(a) for x = a, and then we would not have had a function to begin with! Thus,
we conclude that the point of symmetry (a; b) must lie on the function y =f(x) itself.

Reflecting upon this proof and looking at further examples, I soon realized with
then obviously seeming hindsight, that the differentiability and/or continuity of the
point symmetric function were sufficient conditions, but not necessary conditions
for the point of symmetry to lie on the function itself, In fact, the whole proof hinges
only around the property that y =f(x) is uniquely defined at x = a. Thus, it is directly
applicable to, for instance, a point symmetric function defined as # = 0, y= —x+l
for 1 ̂  x > 0 and y=—x— 1 for—1 < # < 0 (see second figure in Figure 7). This result
was then generally reformulated as follows:

If a function y =f(x) has a point of symmetry at (a; b) and it is defined at x — a,
then (a; b) lies on the function itself.

Now clearly the converse of this result is also trivially true. For instance, if the point
of symmetry (a; b) of a function lies on the function itself, it obviously follows that the
function must therefore be defined at x = a. Furthermore, since the differentiability
of a function at x = a implies continuity at that point, which in turn also implies that
the function is defined at x — a, the aforementioned conditions are clearly special
conditions of the general result formulated above. However, the converses of both
these special cases are false (a counter-example for both cases is given by the second
figure in Figure 7).
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Symmetries of differentiable functions 629

9. Formal analytical proofs
Although I was by now sufficiently convinced of the general validity of these

three conjectures by the production of the above arguments (in combination with the
preceding experimental investigations), I still felt a need to prove them analytically
in terms of the standard transformation equations. Personally, the function of the
following proofs was therefore not to eliminate any doubts, but simply to systematize
these results neatly in relation to the familiar conceptual techniques of analysis and
transformation geometry. (Compare de Villiers [5].) (It will also be noted by the
reader that the geometric proofs convey a greater sense of explanation than the
analytical proofs below.)

Theorem 1. A differentiable function y=f(x) is reflective symmetric around a
vertical line x = a if and only if its derivative dy/d# =/'(#) is point symmetric around
the point (a; 0).

Proof. Consider a differentiable function y=f(x) which is reflective symmetric
around x = a. Translate the graph of the function horizontally to lie symmetric
around the y-axis. Therefore y =/(x + a)oy =f(—x + a).

Now consider the derivative of the left side of the above equivalence:

dy f(x + a + h)-f(x + a)
— = hm (1)
ax A-o h

The right side of the above equivalence is, however, a composite function. To
determine its derivative we set u = — x and first determine dyjdu as follows:

dj ..
— = hm
du (,-.0

But du/dx = —1, and therefore:

dy dy du
dx du dx

h->0 h

Since y=f(x + a) and y=f( — x + a) are equivalent forms of the same function, the
derivatives of both forms must clearly also be equivalent. Therefore, (l)o(2), which
implies that the derivative dyjdx is point symmetric in relation to the origin (0; 0). If
we now translate the graph y=f(x + a) back to its original position by moving it
horizontally by a units, the derivative is clearly translated by the same amount so that
its point of symmetry moves to (a; 0). This then completes the proof of the first part
of the first conjecture. The converse can now be proved in the same way as shown
earlier by starting from the equivalence between (1) and (2).

Theorem 2. A differentiable function y =f(x) is point symmetric around a point
(a; b) if and only if its derivative dy/dx =f'(x) is reflective symmetric around the
vertical line x = a.
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630 M. D. de Villiers

Proof. Consider a differentiable function y =f(x) which is point symmetric around
(a; b). Translate the graph of the function so that it lies point symmetric around the
origin (0;0). Therefore, y=f(x + a) — boy=—f( — x + a) + b. Now consider the
derivative of the left side of the above equivalence:

ax j,-o

Since the right side of the equivalence is also a composite function we find its
derivative as in the preceding proof:

dy .. f(-x + a + h)-f{-x + a)
— = hm (4)
ax h->o n

Similarly to the previous proof, the two forms of the derivative above are also
equivalent, e.g. (3)o(4). Therefore the derivative dy/dx is reflective symmetric
around the j-axis. A translation of the graph of y=f(x + a) — b vertically by b units
clearly does not affect the point symmetry at (0; 0) of its derivative (the derivative of a
constant is 0). Therefore, a translation back to its original position will only involve a
horizontal translation of the derivative by a units, which means that the vertical line
of symmetry has moved from they-axis to x — a. This then completes the proof of the
first part of the second conjecture. The converse can now be proved in the same way
as shown earlier on.

Theorem 3. A point symmetric function has a point of symmetry (a; b) lying on the
function itself, if and only if the function is defined at x = a.

Proof. If (a; b) lies on the function, it follows directly that b =f(a) and therefore that
the function is defined at x = a. This then completes the first part of the proof. To
prove the converse without reductio ad absurdum, we can proceed as follows. If a
function y=f(x) is point symmetric at (a; b), then

)-boy= -f(—

(see previous proof) or equivalently

)-b=-f(-x + a) + b (5)

However, if y =f(x) is defined for x = a, then y =f(x + a) — b will be defined at x = 0
(the original graph was horizontally translated by a units). Therefore, we may
substitute x = 0 in equation (5) to obtain:

f(a)-b=-f(a) + bof(a) = b

Which means that (a; b) lies on the function itself, and completes the proof of the
converse.

10. Further reformulation
Although having proved the first two conjectures as theorems, I proceeded to

further explore them in a quasi-empirical fashion (a la Lakatos) by considering a great
variety of cases, some of which are shown in Figure 8. Note that I here only explored
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Symmetries of differentiable functions 631

the first theorem, as similar dual examples could be constructed for the second
theorem. From the first two examples shown, it quickly became clear that a function
with a 'corner' on its vertical line of symmetry is merely analogous to the second
reflective symmetric case considered in Figure 6, where the function is discon-
tinuous on the vertical line of symmetry and the derivative also does not exist.
However, such 'corners' (or discontinuities) need not lie on the vertical line of
symmetry as shown by the third case in Figure 8, but need only lie symmetrical with
respect to the vertical line of symmetry.

Consider now the fourth case shown in Figure 8. Clearly the derivative (dyjdx = 1
for x>2 and dyldx = —1 for x<2) of this reflective symmetric function is point
symmetric around (0; 0), thus exemplifying the theorem. However, if one shifted the
point (0; 2) on the reflective symmetric function to say ( — 1; 2) its reflective
symmetry is destroyed, but its derivative remains point symmetric around (0; 0).
The point symmetric property of the derivative in this case, was therefore not a
sufficient condition for its integral to be reflective symmetric. So here we shockingly
have a counter-example to the converse part of Theorem 1. Disaster! But how could
this be? Did I not formally prove Theorems 1 and 2?

My initial reaction was of course in defence of both my theorems; in other words,
I simply thought that this counter-example fell beyond their domain of validity.

y = x

y = - x

-O
- 2

Figure 8.

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

K
W

A
Z

U
L

U
-N

A
T

A
L

] 
at

 0
1:

05
 1

2 
Fe

br
ua

ry
 2

01
5 



632 M. D. de Villiers

(Compare with the process of 'monster barring' described by Lakatos, ([1], p. 42—
47). However proceeding to recheck my proofs and more closely examine the domain
of validity of the theorems in question, the problem was then found to lie completely
with a subconscious restriction of the actual domain of validity. The fundamental
aspect of both theorems was not as I had subconsciously thought, that the function
as a whole should be symmetrical, but only that the differentiable parts of the
function should be symmetrical! This was clearly already evident (with hindsight) in
the formal proofs, as they obviously could only refer to those parts of the function
which are differentiable. Without affecting the validity of the proofs, I therefore
extended the first two theorems by simply reformulating them as follows.

Theorem 1. The differentiable parts of a function y =f(x) are reflective symmetric
around a vertical line x = a if and only if the derivative(s) dy/dx =/'(*) of these parts
are point symmetric around the point (a; 0).

Theorem 2. The differentiable parts of a function y^fix) are point symmetric
around a point (a; b) if and only if the derivative(s) dyjdx =f'(x) of these parts are
reflective symmetric around the vertical line x = a.

It should furthermore be noted here that had I not embarked on further quasi-
empirical examination of the theorems in question, I would probably not have
discovered the above pathological case leading to their further extension. This
example therefore confirms the danger of a blind reliance on deductive proof as the
final and only authority in mathematical research. According to Lakatos ([1], p. 143)
such a distorted reliance 'is the worst enemy of independent and critical thought'.
(Also compare [5].)

Finally, since y=l/x is point symmetric with respect to the origin we would
expect its integral to be reflective symmetric around the_y-axis. The usual definition,
however, for this integral is

I
with x>0, which is not reflective symmetric around a vertical axis. In order to
maintain the symmetry of these two theorems we would therefore have to define

with x e R giving us a natural logarithm graph which lies symmetric with respect to
the y-axis.

11. Utility and application
Clearly the first two theorems embody a certain sense of beauty and harmony, as

well as a remarkable simplicity. They are mysterious on the one hand, but also
intuitively obvious on the other hand. It is for instance still with a sense of
wonderment and excitement that I look at the well-known exotic graphs of
symmetric functions such as shown in Figure 9 and realize that their derivatives will
be correspondingly symmetric, whatever they may be!

The utility of these two theorems and their corollaries obviously lie in their
application to finding possible lines of symmetry or points of symmetry in the graphs
of especially polynomial functions. For instance, let us suppose we wanted to find out
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"V7

y = x 2 ^ ' / y = x2 sin j for

for x=0

5 sin x + 3 sin2x + 2 sin3x

Figure 9.
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634 M. D. de Villiers

if the polynomial y =f(x) = x4 — 9x2 + 7x + 4 has vertical line symmetry. We then
only need to determine the first derivative f'(x) = 4x3 — 18x + 7 and then the second
derivative/"^) = 12a:2 —18. The second derivative is clearly symmetric around the
y-axis (x = 0). Therefore, according to Theorems 2 and 3, the point of symmetry of
the first derivative will lie at (0; 7). But according to Theorem 1 this is not a sufficient
condition for y = x4 — 9x2 + 7x + 4 to have a vertical line of symmetry at x = 0, since it
is necessary that the point of symmetry of the first derivative lies on the x-axis. We
therefore conclude that this polynomial has no vertical line symmetry.

For another example let's suppose we want to find out if the polynomial function
y =/(*) = x5l5 + x4 + (5/3)x3 + x2 has a point of symmetry. We can then find the first,
second and third derivatives as follows:

/"(*) = 4x3 +12x2 +10* + 2

The third derivative is clearly reflective symmetric around x= —24/(2 x 12)= — 1,
which means through substitution into the second derivative according to Theorems
2 and 3, that the second derivative is point symmetric at (— 1; 0). However, according
to Corollary 2 this is a sufficient condition to conclude that the original function is
point symmetric, and if we solve / ( — I), this point is given by ( —1; 2/15).

12. Further problems and new conjectures
These theorems are also useful in finding the points of symmetry of functions

other than polynomials or proving that they have none. Consider, for example, the
rational function defined by

ft ^
x—3

and its derivative given by

x2-6x-l
/'(*) = -

(*-3)2

When I considered the derivative f'(x) I found that both the numerator and the
denominator were reflective symmetric around x = 3. I then intuitively felt that this
had to mean that the derivative itself was reflective symmetric around * = 3. This
would then in turn mean according to Theorem 2 that/(a;) was point symmetric
somewhere along the line x = 3{ To check if the derivative was indeed reflective
symmetric, I excitedly translated it by 3 units to the left, e.g.

_x2-5
~ x2

Since each x can clearly be replaced by — x without affecting the equation, f'(x + 3) is
clearly reflective symmetric around x = 0, and therefore/'(#) is reflective symmetric
around x = 3 as suspected.
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y
1

635

( 3 ; B )

Figure 10.

Since the function is undefined for x = 3, the point of symmetry cannot lie on the
function itself (Theorem 3), but somewhere along the line x = 3 which in this case is
an asymptote. The question was, however, where on this line was it to be found?
Noticing that the function also has a skew asymptote of y = x + 3, I immediately
suspected that the point of symmetry had to lie at the intersection of these two
asymptotes, namely the point (3; 6). Translating the graph with the transformation
y=f(x+3)~6,1 found that the transformed equation was point symmetric around
(0;0), implying that the original graph was indeed point symmetric at (3; 6) (see
figure 10).

Using precisely the same reasoning as in the previous problem, I could also find a
point of symmetry for the rational function/^) = (x2 + 2x~ 24)/(# + 2) at (— 2; — 2),
the intersection of its two asymptotes.

13. Further generalizations and proofs
As shown in the previous two problems I had made a number of intuitive

conjectures which happened to work out in both cases. Was it by chance or could one
prove that these were true in general?

However some false conjectures were also simultaneously made through over-
generalization from special cases. At one stage from my experience with point
symmetric rational functions like the above, I for instance thought that if a point
symmetric function has a vertical or horizontal asymptote then it must also have at
least one skew asymptote (or correspondingly a horizontal or vertical one). However
upon trying to prove it in general, I soon realized that it was false by constructing a
counter-example of a point symmetric function with only one vertical asymptote as
shown by the first figure in Figure 11, as well as a point symmetric function with only
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636 M. D. de Villiers

Figure 11.

&.'

Figure 12.

a horizontal asymptote as shown by the second figure in Figure 11. Eventually the
following general conjecture was made and proved.

Theorem 4. If a point symmetric function has 2 and only 2 non-parallel asymptotes
then its point of symmetry lies at the intersection of the two asymptotes.

Proof. Consider any two non-parallel asymptotes as shown by the solid lines in
Figure 12. If the point of symmetry is not at the intersection of the two asymptotes,
say at A as shown, the point of intersection would not be mapped on to itself upon a
half-turn, but on to the point of intersection of two additional asymptotes (shown by
the dotted lines). But this is a contradiction since only two non-parallel asymptotes
are given which can have only one point of intersection. Similarly, the choice of A on
either of the asymptotes, but not at the intersection, leads to a contradiction since an
additional asymptote and a point of intersection is added. Thus, the point of
symmetry must lie at the intersection of the two asymptotes. (We can similarly prove
that if a point symmetric graph has 1 and only 1 asymptote then its point of symmetry
must lie on that asymptote.)

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

K
W

A
Z

U
L

U
-N

A
T

A
L

] 
at

 0
1:

05
 1

2 
Fe

br
ua

ry
 2

01
5 



Symmetries of differentiable functions 637

Theorem 5. A function of the type y —f{x)jg{x) is reflective symmetric around x = a
if and only if: (1) both/(x) andg(x) are reflective symmetric around x = a, or (2) both
f(x) and g(x) are point symmetric around (a;0).

Proof. Ify =f(x)jg(x) is reflective symmetric around x = ait can be translated to lie
symmetric around the j>-axis. Thus,

f(x + a) _f(-x + a) ̂  -f(-
)g(x + a) g(-x + a) -g(-

Therefore, if we assume that/(a:) and g(x) have no common factors other than 1 or
— 1, we can deduce thatf(x + a)of( —x + a) and g(x + a)og( — x + a) or f(x + a)o
—f(—x + a) and g(x + a)o— g( — x + a).

Consequently/^) and g(x) are both reflective symmetric around x = a orf(x) and
g(x) are both point symmetric around (a; 0). This then completes the proof of the
forward implication. The converse can now be proved in the same way, but without
the restriction that/(a:) and g(x) have no common factors other than 1 or —1.

Using similar reasoning and the same proof technique, I next considered the
analogous case for a point symmetric graph of the same form. This led to the
following discovery.

Theorem 6. A function of the type y=f(x)lg(x) is point symmetric around (a; 0) if
and only if: (1)/(JC) is reflective symmetric around x = a and g(x) is point symmetric
around (a; 0) or (2) f(x) is point symmetric around (a; 0) and g(x) is reflective
symmetric around x = a.

Proof. Similar to that of Theorem 5 and is left to the reader.

14. Further applications
As special cases of Theorems 5 and 6 we can consider firstly the reciprocal

functions of the type y = l/g(x). Since y = 1 is reflective symmetric around any x = a
but not point symmetric around any (a;0), it follows from Theorem 5 that a
reciprocal function is reflective symmetric around x = a if and only if g(x) is reflective
symmetric around x = a. An example is given by the first figure in Figure 13 where
y=\j{x2 — 2x + Z) is reflective symmetric around x=\ since x2 — 2a;+3 is
reflective symmetric around x = 1. Similarly from Theorem 6 a reciprocal function is
point symmetric around (a; 0) if and only ifg(x) is point symmetric around (a; 0). For
instance, j> = cosec;c=l/sin.!e is point symmetric around (0;0) since sin a; is point
symmetric around the origin. (See the second figure in Figure 13.) Similarly we can
conclude that y=\l(x— I)3 is point symmetric around (l;0) since (x— I)3 is point
symmetric around (1; 0), but y = l/(*3 +1) is not point symmetric around the point
(— 1; 0) since x3 + 1 is point symmetric around (0; 1). (Even though a rough sketch of
y = \l(x3 +1) as shown in Figure 14 might suggest that it has a point of symmetry
there.)

These additional theorems are also useful in directly determining vertical lines or
points of symmetry in functions of the type y =f{x)jg{x) where f(x) ̂  1. For instance,
y = (x3 — 3x2 + 2x)l(x3 — 3x2 + 3x—1) is reflective symmetric around x=l, since
the numerator and denominator are both point symmetric around (l;0) (Theorem
5). Similarly according to the same theorem the function y = (x2 — 2)/(—x2 + 2x)
cannot be reflective symmetric around any vertical line since the numerator and
denominator are not reflective symmetric around the same vertical line. Using
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638 M. D. de Villiers

^ y

,V=cosec <x

Figure 14.

Theorem 6 we can immediately deduce that y = (2x2 + 4x + 3)l(x+l) is point
symmetric around ( — 1; 0).

Since Theorem 6 provides no criteria for determining points of symmetry at any
point (a; b) in comparison to the strong criteria for reflective symmetry around x = a
as contained in Theorem 5, it is generally somewhat more difficult to determine
points of symmetry of graphs beforehand. For instance, let us consider the graph of
the function y=f(x) = (x3—x2—x—l)l(x2 — 2x).

The numerator is point symmetric around (1/3; —38/27) and the denominator is
reflective symmetric around x=\, and the function can therefore not be reflective
symmetric. However, if we determine its derivative

dy _ x4 - 4x 3 + 3x2 + 2x- 2
ch?~ (x2-2x)2

we find that the numerator and denominator are both reflective symmetric around
x = 1. Therefore, dyjdx is reflective symmetric around x = 1 according to Theorem 5.
But according to Theorem 2, y =f(x) will then be point symmetric somewhere along
the line x = 1. Since the function is defined for this value, the point of symmetry will
lie on the function itself (Theorem 3), namely at (1; 2). The graph of this function is
shown in Figure 15.

For another example, let's consider the function defined by v =/(*) = xftx — 1)
(x + 2), the graph of which is shown in Figure 16. When I first saw this graph in
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Symmetries of differentiate functions 639

xz-2x

Figure 16.

Allendoerfer and Oakley ([2], p. 182), I intuitively felt that this graph was point
symmetric somewhere between x = 0 and x = — 1, possibly at (— 1 /2; 2/9). But one's
intuition is not always right! Firstly, we can make no firm conclusion from the fact
that the numerator is point symmetric around (0; 0) and the denominator is reflective
symmetric around x= —1/2. (Note the similarities with the previous problem.) Ifwe
determine its derivative, we find

dy -x2-2

Since the numerator and denominator are not reflective symmetric around the same
vertical line, the derivative cannot be reflective symmetric around any x = a
(Theorem 5). Therefore, according to Theorem 2 we can conclude that this function
has no point of symmetry. Actually in retrospect, there is a simpler way to prove that
this function has no point of symmetry. For instance, since the function has 3 and
only 3 asymptotes respectively at x = — 2; x = 1 and y = 0, it cannot lie at (— 1 /2; 2/9)
since a half-turn of the function around this point would introduce another
horizontal asymptote. To be symmetric with respect to the asymptotes it would
therefore have to lie at ( —1/2; 0), but this leads to another contradiction since the
function is defined at x= —1/2 and must therefore lie on the function according to
Theorem 3.
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640 M. D. de Villiers

One should also be careful in situations where common factors are involved
and not make hasty conclusions. Consider for example the rational function
y = (x—l)2(x2 + 4x + 28)l(x—\)2(x+2)2. As the numerator and denominator are
both reflective symmetric around x = — 1 /2, one might hastily conclude according to
Theorem 5 that this function is reflective symmetric around x= —1/2. However, as
the function is undefined for x=l and x=— 2, and since these values are
unsymmetric with respect to x= —1/2, neither the numerator, denominator nor the
function itself can therefore be reflective symmetric around x= —1/2. (Note
however that y = (x2 + 4x + 28)l(x + 2)2 is reflective symmetric around x — — 2.)

15. Still further results
As is usually the case with mathematics, new problems generate still further

problems, and new theorems suggest still further theorems. It is a never-ending
evolution, which is sometimes best likened to a nuclear chain reaction! During the
investigation described above, I had for example initially only focused on proving
the point symmetry of all cubic polynomials. However, in the process I recognized a
relationship between the symmetric properties of the differentiable parts of a
function and the symmetric properties of its derivative, which culminated in
Theorems 1 and 2. Although their application to polynomial' functions was
straightforward, I was led to discover two more theorems when I tried to extend their
application to more complex functions (e.g. rational). But if one could consider the
symmetric properties of the quotients of functions, why not also the symmetric
properties of the sums and products of functions? The results which follow were
mainly discovered in a formal manner, arguing analogously from the proof
techniques employed earlier. In contrast to the role that specific examples played in
the discovery of the earlier results, they were now used mainly to check the conquests
of deduction afterwards. Although these results are perhaps not quite as useful as the
earlier ones since they are not biconditional, they nevertheless nicely retain the
'duality' between vertical line and point symmetry.

Theorem 7. If a function/(#) is point symmetric around (a;b) and a function g(x) is
point symmetric around (a;c) then the function y=f(x)+g(x) will be point
symmetric around (a;b + c).

Proof. lff(x) is point symmetric at (a; b) and g(x) is point symmetric at (a; c), then

f(x + a)-b=-f(-x + a)+b (6)

and

-c=-g(-x + a) + c (7)

Now consider the function y =f(x) +g(x) and its translation by a horizontal units and
b + c vertical units. Therefore, the translated function is

by substituting equations (6) and (7)
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Symmetries of differentiable functions 641

J

(a ;0

f ( x )=2x 3 -6x 2 +6x+1

g(x )=x 3 -3x 2 +3x

Figure 17.

which means thaty =f(x) +g(x) is point symmetric around (a; b + c). Since we can in
a similar fashion prove that y =f(x) —g(x) will be point symmetric around (a;b — c),
this completes the proof of the theorem.

In the discovery of this particular result, I first considered the case where/(x) and
g(x) are point symmetric around the same point (a; 0) on the ar-axis. (See for example
the first figure in Figure 17.) However, upon proving in general for such cases that
f(x)+g(x) will be point symmetric around (a; 0), I realized that it was not necessary
that both be point symmetric around (a; 0). (Compare with Theorem 3.) This then
led to the general result formulated as Theorem 7 above (see second figure in Figure
17 where/(a:) +g(x) is point symmetric around (1; 4)). The converse of this theorem
is of course false, since f(x) and g(x) need not both be point symmetric nor point
symmetric on the same vertical axis x = a for a function f(x)+g(x) to be point
symmetric around (a; b). For example, y = (2x3) + (x3 — 3x2) = 3x3 — 3x2 is point
symmetric around (1/3; —2/9), but its component parts 2x3 and x3 — 3x2 are
respectively point symmetric around (0;0) and (1; —2).

16. Logical interdependence
Theorem 8. If two functions f(x) and g(x) are both reflective symmetric around
x — a, then the functiony=f(x)+g(x) will also be reflective symmetric around x = a.

Proof. Although this result can be proved from first principles just like the previous
theorems, the logical relationship between these theorems are nicely emphasized by
the following proof.

Consider firstly the functions f(x) and g(x) which are both reflective symmetric
around x = a. Then according to Theorem 1 f'(x) and g'(x) will both be point
symmetric around (a;0). Therefore according to Theorem 7, f'(x)+g'(x)
will be point symmetric around (a; 0), but since this is equivalent to the derivative of
y —f(x) ig{x), according to Theorem 1, the functiony =f(x) ±g(x) must be reflective
symmetric around x = a.

This result is clearly analogous to Theorem 7, and as shown in Figure 18, one
immediately anticipates that f(x) +g(x) would still be reflective symmetric around
x = — 1. Note that in both theorems, if we consider the special case where either f(x)
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642 M. D. de Villiers

f ( x ) - x

g( x) = x( X+2)(

Figure 18.

or g(x) is not a function of x but only a constant, say k, we have the well known result
that the respective graphs are translated by k units in the vertical direction without
any change to their symmetric properties. Furthermore, it should be clear that
Theorem 8 provides a sufficient condition for vertical line symmetry, but is not a
necessary condition, thereby implying that the converse is false. For example, the
addition of two quadratic functions with different vertical lines of symmetry can
easily provide another quadratic function with vertical line symmetry, not necessari-
ly coinciding with either line of symmetry of its original components. Note however
that in general it is not a sufficient condition for a function/(*) +g(x) to be reflective
(or point) symmetric, when f(x) and g(x) are reflective symmetric (or point)
symmetric around (or on) different vertical lines. For a simple example, consider the
function y =f(x) —g(x) withf(x) = x2 + 2x and g(x) = x2. This function is clearly not
reflective symmetric around a vertical line, even though f(x) and g(x) are. Similar
counter-examples can easily be produced for the general addition/subtraction of
point symmetric functions.

Theorem 9. If a function f(x) is reflective symmetric around x = a and a function
g(x) is point symmetric around (a; 0) or \(f{x) is point symmetric at (a; 0) and g(x) is
reflective symmetric around x = a, then the function y =f(x) • g(x) is point symmetric
at a; 0).

Proof. Can be done directly from first principles as in the previous examples and is
left to the reader.

Theorem 10. If functions/(x) and g(x) are both reflective symmetric around x = a or
both are point symmetric around (a; 0), then the function y=f(x) ~g(x) is reflective
symmetric around x = a.

Proof. Although this result can also be proved from first principles, it is useful for
the purpose of systematization to prove it in terms of the other theorems as follows.

Consider functions f(x) and g(x) which are both reflective sym-
metric around x = a, as well as the function y=f(x)-g(x) and its derivative dy/dx
=f'(x)'g(x) +f(x) •g'(x). Since f(x) is reflective symmetric around x = a, f'(x) will be
point symmetric around (a;0) (Theorem 1). Therefore, according to Theorem 9
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Symmetries of differentiable functions 643

f'(x)-g(x) will be point symmetric around (a;0). Similarly we can show that
f(x)'g'(,x) is also point symmetric around (a;0), and employing Theorem 7 we can
deduce that dyjdx~f'{x)- g{x) +f(x)•g'(x) is point symmetric around (a;0). How-
ever, according to Theorem 1, if dy/dx is point symmetric around (a; 0) we can
deduce that y =f(x) • g(x) is reflective symmetric around x = a. In a similar fashion we
can also prove the case where f(x) and g(x) are both point symmetric around (a; 0).
This then completes the proof of this theorem.

The converses of Theorems 9 and 10 are both false, since the theorems do not
provide necessary conditions for vertical line or point symmetry. For instance,
consider y = (x— \){x — 3) = x2— 4x + 3 where the factors are respectively point
symmetric around (1; 0) and (3; 0) (among others) but the product x2 — 4# + 3 is
reflective symmetric around x = 2, thus providing a counter-example to the converse
of Theorem 10. (Note however that in general it is not a sufficient condition for a
function/(x) 'g(x) to be reflective symmetric when/(#) &ndg(x) are point symmetric
around different points on the jc-axis. Consider for example y = x3(x—\) = x4 — x3

which is not reflective symmetric although its factors are respectively point
symmetric around (0; 0) and (1; 0).) As direct applications of Theorems 9 and 10 we
may consider the first two figures already given in Figure 10. These theorems may
also be employed in combination with some of the other theorems to prove, for
example, the converse of Theorem 5 in terms of Theorem 6. (It is not possible, for
instance, to prove the forward implication of Theorem 5 using Theorems 7 to 10
(among others) since their converses are false.)

Finally, the following intuitive conjectures are left for the reader to investigate
(i.e. to prove, improve or refute):

If a periodic function has an unrestricted domain and a point of symmetry
and/or a vertical line of symmetry, then it has infinitely many points of
symmetry and/or vertical lines of symmetry.

If a point symmetric function is smooth and continuous at its point of
symmetry, then its point of symmetry is a point of inflection.

If a function with vertical line symmetry is smooth and continuous at the point
of intersection between its line of symmetry and the function, then this point is
either a local maximum or minimum or the function is constant at this point.

17. Final remarks
Although I have attempted to write as faithfully about the way I arrived at the

results reported in this paper, it should be noted that it is not a hundred per cent
accurate. Besides cutting corners for the sake of economy here and there, one has the
problem that writing is strictly sequential and uni-dimensional while one's thinking
is non-sequential and multi-dimensional: one can think of many things and their
interrelationships at the same time, but one cannot write them down in that way.

Therefore I hope that I have allowed the reader at least partially to share in the
excitement and personal joy I experienced during this investigation. Hopefully this
paper has also convincingly demonstrated the role of 'quasi-empirical' methods in
mathematical research. It has shown that the discovery and invention of new
mathematics does not start with the fully fledged theorem, but frequently grows
from the need to solve a particular problem situation and through several
generalizations and refutations. Formal deductive reasoning was mostly preceded by

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

K
W

A
Z

U
L

U
-N

A
T

A
L

] 
at

 0
1:

05
 1

2 
Fe

br
ua

ry
 2

01
5 



644 Symmetries of differ•entiable functions

intuitive leaps and bounds deeply embedded in a context of conjecturing and quasi-
empirical checking. The educated guess, the intuitive leap furthermore, does not
come from nowhere but comes from varied experiences and a quasi-empirical
familiarization with a specific topic over a period of time. Thus we saw that
confidence in the truth of conjectures 1 and 2 gradually grew from the consideration
of several specific examples and their visual representation to the eventual
formulation of an intuitive geometric proof. This was followed by a formal analytical
proof whose main purpose was not the establishment of their truth, but for the sake
of systematizing them into a well established body of knowledge.

Further quasi-empirical checking then revealed a subconscious restriction of
their domain of validity, which led to their more general reformulation. In the
consequent application of Theorems 1 and 2 to the finding of vertical lines or points
of symmetry in specifically the rational functions, new conjectures were discovered
and proved as Theorems 5 and 6. Using the proof techniques developed so far, this
led to a mainly deductive investigation of the symmetric properties of the sums and
products of functions, with specific examples now fulfilling a checking role, leading
to Theorems 7 and 10. Note that Theorems 3 and 7 also nicely illustrated the
discovery function of proof in another context, i.e. how new mathematical results are
sometimes discovered through deductive generalization. For example, by identify-
ing the essential characteristic of a conjecture by the production of a proof, one
sometimes finds that the conditions contained in the original conjecture are
sufficient, but not necessary, thus leading directly to a generalization. (Compare
with [5].) Although at the time of writing I am not sure of the originality of any
of the ideas expressed here, I nevertheless experienced it as an exciting personal
learning experience and gained a better understanding of the nature of mathematics
through it.
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